Technical University of Munich WS 2019/20
Chair for Logic and Verification 20.12.2019
Prof. Tobias Nipkow, Ph.D. Deadline: 13.1.2020, 23:59

I;Réile, ISteyens, . Kgppelmangy MGM. Bberly & & & & & © O

116 SR o6 S o6 5 o6 o S ¢ S o o 5t 6 5 6 R o 6 R o

Functional Programming and Verification
Sheet 10

Homework

You need to collect 4 out of 5 Christmas stars (x) to pass this sheet.

Exercise H10.1 So This Is Christmas [1-3: %, 4+5: x, 6: *k, 7: ]

The Ubungsleitung is drinking mulled wine, it is snowing on the submission system, in other
words: it is Christmas. And just like every Christmas, the MC Jr is having a Christmas board
game evening with his family. However, he got terribly board of playing “Settlers of Catan” and
“Malefiz” every year and hence decided to introduce his lucky family to a new game this year:
Domineering.

Domineering is a two person game played on an n x n-board. The players have a collection
of dominoes which they place on the grid in turn, covering up squares. One player places tiles
vertically, while the other places them horizontally. Of course, one is not allowed to stack
dominoes. The first player who cannot place another domino looses the game.

So, “why is he telling me all that?” you are asking? Well, the MC Jr has an ingenious plan
that will make him the Christmas board game night champion of 2019, but he needs your help!
He convinced his family that playing board games the traditional way is “uncool”. Instead, the
Christmas board game night of this year will be held on the MC Jr’s new Linux-powered laptop
running Haskell. What his family does not know is that the MC Jr will have some help of a
very special Domineering-Al written by you.

To make this plan come reality, the MC Jr started writing a Domineering framework. However,
just like every year, he forgot to buy Christmas presents on time and hence has to organise them
auf den letzten Driicker. As a Christmas present to you, he copied his code to the template file
so that you do not have to start from scratch.

1. Write a function prettyShowBoard :: Board -> String that creates a pretty string of
a given board as exemplified by the following:

prettyShowBoard [] = ""

prettyShowBoard [[P H, P H],[E, E]] = "HH\n++\n"
prettyShowBoard [[P V, E]l,[P V, E]l] = "V+\nV+\n"
prettyShowBoard [[E,P H,P H],[P V,E,E],[P V,E,E]]

= "+HH\nV++\nV++\n"

Note: You can then use putStr $ prettyShowBoard b to print a board b in ghci.

2. As a convention, we encode moves using a position (r,c) in the following way:

TR 6 S 5t SR o 4 6 o6 6 S 5 o o 6 6 6 G R o o o

L o e


https://home.in.tum.de/~raedle/
https://www21.in.tum.de/
http://www21.in.tum.de/~nipkow/
https://home.in.tum.de/~raedle/
https://www21.in.tum.de/~stevensl/
https://www21.in.tum.de/~kappelmk/
https://www21.in.tum.de/~eberlm/
https://fpv.in.tum.de
https://vmnipkow3.in.tum.de/web
https://en.wikipedia.org/wiki/Malefiz
https://en.wikipedia.org/wiki/Domineering

L e

3

S G S G G s S S ¢ R A

e If the horizontal player chooses (r,c), then positions (r,c¢) and (r,c + 1) should be
covered.

e If the vertical player chooses (7, ¢), then positions (r, ¢) and (r+1, ¢) should be covered.

Write a function isValidMove :: Game -> Pos -> Bool that checks whether a move (as
encoded by the position and current player) is valid. In particular, the move must not
cover any already occupied spaces.

. Write a function canMove :: Game -> Bool that checks whether the current player can

play another move.

. Write a function updateBoard :: Board -> Pos -> Field -> Board that updates the

board at the given position with the given field value. You can assume that the function
receives only valid positions.

. Write a function playMove :: Game -> Pos -> Game that plays a move (as encoded by

the position and current player) and returns the updated game. You can assume that the
function only receives valid moves.

. (Competition) Now let’s turn to the most important exericse: write a Domineering-

strategy christmasAIl :: Strategy that chooses the next move for the current player.
You can assume that your strategy is only used for 12 x 12 boards and is only called if
the current player can play at least one more move. The strategy also receives an infinite
list rs :: [Double] of random numbers between 0 and 1 as an input that you can use
for probabilistic methods.

Make sure your strategy is capable of beating the MC Jr’s family, leading him to sweet
victory! But beware: the MC Jr’s family is really impatient and will simply stop playing
but still claim victory if your strategy takes longer than one second per move. Moreover,
for the competition, you will also have to compete against your fellow students.

All submissions passing the exercise and containing the {-WETT-}...{-TTEW-} tags will
automatically be simulated in regular intervals!. The most recent results (including fancy,
animated gifs) will be available on our Domineering championship website that will be
published in the upcoming days.

Here are some possible methods to get started with a competitive strategy: Minimax,
Alpha-beta pruning, Monte Carlo Tree Search, go complete crazy and use some Machine
Learning techniques, or come up with your own home-brewed heuristics.

As usual, the MCs would be very grateful if you leave some explanatory words for your
strategy. If you have issues making your strategy work on the submission server, e.g. if
you want to submit a (large) model for your machine learning approach, let us know on
Piazza.

Important: If you submit a competition exercise, you agree that we are allowed
to publish your name as part of the competition on our website. If you just want

!depending on the number of submissions, this interval will be longer or shorter

L N o R

R TR ¢ S S S G SR ¢ S SR SN o SN S SR SN o SR & SN S S o S - S S S o S o


https://www.youtube.com/watch?v=k9iYm9PEAHg
https://www.youtube.com/watch?v=k9iYm9PEAHg
https://vmnipkow3.in.tum.de/domineering2019/index.html
https://en.wikipedia.org/wiki/Minimax
https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning
https://en.wikipedia.org/wiki/Monte_Carlo_tree_search
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://piazza.com/class/k0p7t3553ta63i

L R R R R e 5 ¢ 5 ¢

116 SR o6 S o6 5 o6 o S ¢ S o o 5t 6 5 6 R o 6 R o

to submit a competition exercise as part of your homework without taking part in
the competition, you can just remove the {-WETT-}...{-TTEW-} comments of your
submission.

7. Write a function

play :: [[Doublel]l -> Int -> Strategy -> Strategy ->
([Board],Player)

that receives a list of lists with random numbers rss, a dimension dim, and two strategies
sv, sh and plays a game using strategy sv for the vertical and sh for the horizontal player
starting from an empty dim x dim board. In each round, the first list of rss should be
passed to the current player. You can assume that rss contains enough lists for the whole
game. The function should return a list of all board states (start to end) and the winner
of the game. By convention, the vertical player will start the game. A player looses the
game if no valid move can be played or the player chooses an invalid move.

>k 3k 33k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skoskeoskoskoskoskoskoskoskosk sk sk sk sk sk sk sk ok sk sk sk sk sk ok

*We all wish you a merry Christmas and a happy new year!*
stk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kR ko ok ks ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK koK

.l_ F&d rax

o
= Pl ¥

Source: https://www.xkcd.com/835/

L o s S R e ¢

R TR ¢ S S S G SR ¢ S SR SN o SN S SR SN o SR & SN S S o S - S S S o S o


https://www.xkcd.com/835/

