Technical University of Munich WS 2020/21
Chair for Logic and Verification 06.11.2020
Prof. Tobias Nipkow, Ph.D. Deadline: 17.11.2020, 23:59
J. Radle, L. Stevens, K. Kappelmann, MC Sr Eberl

Functional Programming and Verification
Sheet 1

IMPORTANT: You may only attend the tutorial you are matched with on TUMonline
with a running Haskell environment as specified on the course website http://www21l.in.
tum.de/teaching/fpv/WS20/installation.html. You will also need a microphone and,
optionally but very strongly recommended, a camera for the tutorial. Please read the notes
on

http://www2l.in.tum.de/teaching/fpv/WS20/exercises.html.

Tutorial Exercises

Exercise T1.1 Hello My Pair-Programming Friend :)

As a gentle kick-off, we will split into breakout rooms and check whether we can connect to our
peers and compile and run the template repository provided on the installation website
http://www2l.in.tum.de/teaching/fpv/WS20/assets/haskell_test.zip. Talk about how
lovely Haskell is and show your peers cool things you already learnt in the installation tutorial
(e.g. executing functions with GHCi, Hoogle search, linter hints, etc.).

Once you made sure that you can connect to your peers, your tutor will briefly explain you the
overall structure of a Haskell project. While doing so, she will also show you how to adapt the
test project to set up your first tutorial project folder.

Exercise T1.2 Hello Haskell
a) Define a function
offByOne :: Integer -> Integer -> Bool
that returns True if and only if one of its parameters is the successor of the other parameter.
b) Define a function

threeAscending :: Integer -> Integer -> Integer -> Bool

that returns True if and only if the sequence of parameters is strictly monotonically in-
creasing.

¢) Define a function

fourEqual :: Integer -> Integer -> Integer -> Integer -> Bool

that returns True if and only if all parameters are equal.

https://home.in.tum.de/~raedle/
https://www21.in.tum.de/
http://www21.in.tum.de/~nipkow/
https://home.in.tum.de/~raedle/
https://www21.in.tum.de/~stevensl/
https://www21.in.tum.de/~kappelmk/
https://www21.in.tum.de/~eberlm/
https://fpv.in.tum.de
http://www21.in.tum.de/teaching/fpv/WS20/installation.html
http://www21.in.tum.de/teaching/fpv/WS20/installation.html
http://www21.in.tum.de/teaching/fpv/WS20/exercises.html
http://www21.in.tum.de/teaching/fpv/WS20/assets/haskell_test.zip

Exercise T1.3 For Recursion See Recursion

a) Define a recursive function fac :: Integer -> Integer such that fac n = nl.
b) Define a function sumEleven :: Integer -> Integer such that sumEleven n = Z?:Jrnw i.
Hint: use an auxiliary function.
Exercise T1.4 Maximum Fun
Let g be the following function
g :: Integer -> Integer
gn = 1if n < 10 then n*n else n.
a) Define a recursive function
argMaxG :: Integer -> Integer
such that argMaxG n maximises g in the domain {0, ...,n}. Do not make any assumptions

about g, that is write your function in a way such that it still works when the definition
of g is changed. Return 0 for negative inputs.

Examine the definition of g above to determine when argMaxG n # n. Use your obser-
vations to write a function argMaxG':: Integer -> Integer that does not use g and
satisfies the property argMaxG'n = argMaxG n.

Write a function prop_argMaxGEquiv :: Integer -> Bool that tests the equivalence for
a given number.

Add QuickCheck version 2.* to your project dependencies and run your test in ghci using
quickCheck prop_argMaxGEquiv. You will need to import Test.QuickCheck in your
GHCi session before you can use the function quickCheck.

Homework

Important: Read the submission guidelines on our website http://www2l.in.tum.de/
teaching/fpv/WS20/exercises.html.

This homework is all about numbers. You need to collect 6 out of 8 points (P) to collect a coin
and become an aspiring number wizard.

Exercise H1.1 Cantor’s Creativity [a: 1P, b: 1P, ¢: 1P, d: 1P]

As a matter of course, Haskell knows about pairs; however, we sadly haven’t

learnt about them in class so far. But fear not! As shown by the great
Georg Cantor, we can just encode pairs in a clever way. We do not directly
follow the great Cantor’s approach though but define a different encoding

Georg Cantor

http://www21.in.tum.de/teaching/fpv/WS20/exercises.html
http://www21.in.tum.de/teaching/fpv/WS20/exercises.html
https://www.youtube.com/watch?v=kdMteMT_bcw
https://en.wikipedia.org/wiki/Georg_Cantor
https://en.wikipedia.org/wiki/Pairing_function

function proposed by the MC Sr. The following functions only need to
work for natural numbers N = {0,1,2,...}.

a) Define the encoding function
myPair :: Integer -> Integer -> Integer
such that
myPair x y =22z +1) — 1.
b) Define the inverse function
mySnd :: Integer -> Integer
such that
mySnd (myPair x y) =y.
Hint: Divide by 2 until the remainder is 0.
c¢) Define the inverse function
myFst :: Integer -> Integer

such that
myFst (myPair x y) = .

d) Write a QuickCheck test with parameters p,z,y € N that checks whether p encodes the
pair (z,y).
Hint: You can restrict a test’s domain with the ==> operator, e.g. x > 0 ==> x°3 >= 0.

Exercise H1.2 Esperantigu la entjerojn! [4P)]

In this exercise, you will attempt to curry favour with the MC Senior by implementing, in his
favourite programming language (Haskell), an algorithm to print numbers in his favourite spoken
language (Esperanto). Concretely: write a function numberToEo :: Integer -> String that
takes a non-negative integer below one million and returns its equivalent in words in Esperanto.

The Esperanto numeral system is quite simple: the basic building blocks are:'

0 nul 5 kvin 10 dek
1 wunu 6 ses 100 cent
2 du 7 sep 1,000 mil
3 tri 8 ok

4 kvar 9 nau

IThe correct spelling is actually ‘naii’, not ‘nau’, but bizarre encoding problems on Windows machines and other
related problems is a can of worms the MC Sr did not feel like opening in the first week already.

Tri ringoj por la elfoj sub la hela ¢iel’
Sep por la gnomoj en salonoj el Ston’
Naii por la homoj sub la morto-sigel’
Unu por la nigra rego sur la nigra tron’

Figure 2: The beginning of the ring poem from
Lord of the Rings in Esperanto

Figure 1: The Esperanto edition of George
Orwell’s famous book Nineteen Fighty-Four

Multiples of 10 between 20 and 90 and multiples of 100 between 200 and 900 are simply made
by putting the corresponding digit in front of ‘dek’ (resp. ‘cent’):

20 dudek 30 tridek 200 ducent

and so on. Multiples of 1000 between 2000 and one million are made by putting the corresponding
number in front of ‘mil’; e.g.:

2,000 du mil
10,000 dek mil
11,000 dek unu mil
111,000 cent dek unu mil
234,000 ducent tridek kvar mil

Other numbers are composed similarly to most other languages you probably know: by combin-
ing multiples of thousands, multiple of hundreds, multiples of tens, and digits:

13 dek tri
33 tridek tri
42 kvardek du
1,984 mil naucent okdek kvar
234,567 ducent tridek kvar mil kvincent sesdek sep
937,191 naucent tridek sep mil cent naudek unu

Hint: The operator (++) :: String -> String -> String" allows you to concatenate two
strings, e.g. "kiel" ++ "ekzemplo" == "kiel ekzemplo". The (~) operator lets you take
powers of integers.

This is it for the homework exercise. However, if you want to take part in the competition, do
continue reading.

This exercise was posed by the Master of Competition Senior (MC Sr). It will be marked as

part of your homework but also counts towards the competition.? However, for the competition,
the MC Sr wants to make things a bit more exciting by letting you handle larger numbers as

Zhttp://www2l.in.tum.de/teaching/fpv/WS20/wettbewerb.html

http://www21.in.tum.de/teaching/fpv/WS20/wettbewerb.html

well. These work much like in English or German:

105 unu miliono
2-.10% du milionoj
1-10° unu miliardo
2-10° du miliardoj
12,345,678 dek du milionoj tricent kvardek kvin mil sescent sepdek ok

As you can see, the -j at the end indicates a plural (“two millions”). Starting from 10'2, it
becomes very systematic again:

10% miliono(j) 10° miliardo(j)
10'2 duiliono(j) 10 duiliardo(j)
108 triiliono(j) 1021 triiliardo(j)
1067 n—iliono () 1067 +3 p- 1hardo()
1090 dekiliono(j) 109 dekiliardo(j)

Your solution must be able to handle numbers between 0 and 10 — 1. Note that the online
system will only test your program with inputs less than 10°, so do take care to test your program
for bigger inputs yourself if you do not want to get eliminated shamefully for submitting an
incorrect program.

The solution with the smallest number of tokens wins the competition. For more information
about counting tokens and what library functions you are allowed to use, see the Wettbewerb
website.

The complete solution (including self-written auxiliary functions, but excluding auxiliary func-
tions already present in the template) must be submitted inside the comments {-WETT-} and
{-TTEW-}, for example

{-WETT-}

helper :: Integer -> Integer
helper =

numberToEo :: Integer -> String
numberToEo = ... helper
{-TTEW -}

There is no swifter route to the corruption of thought than through the corruption
of language.
— George Orwell

