
Technical University of Munich WS 2020/21
Chair for Logic and Verification 25.10.2020

Prof. Tobias Nipkow, Ph.D. Deadline: 23.11.2020, 23:59
J. Rädle, L. Stevens, K. Kappelmann, MC Sr Eberl

Functional Programming and Verification
Sheet 2

Sustainability Exercises

The “Nachhaltige Hochschultage Bayern“ are taking place this week (16.–19.11). Consider
attending some of the workshops and lectures. More information can be found here.

Tutorial Exercises

Exercise T2.1 Axiom of Comprehension

Using list comprehension, implement the following functions:

a) Write a function allSums :: [Integer] -> [Integer] -> [Integer] such that, for
every x, y in xs, ys, allSums xs ys contains x + y.

b) Write a function evens :: [Integer] -> [Integer] that removes all odd numbers of a
list.

c) Write a function nLists :: [Integer] -> [[Integer]] such that nLists xs returns a
list that contains every list [1, . . . , x] for each x in xs.

d) Using only one list comprehension, write a function

allEvenSumLists :: [Integer] -> [Integer] -> [[Integer]]

such that allEvenSumLists xs ys computes nLists (evens (allSums xs ys)). Write
a QuickCheck test that verifies this equivalence.

Exercise T2.2 Cantor’s Paradise

For the following exercises, you can use the function elem :: Integer -> [Integer] -> Bool

that returns whether an element is contained in a list.

The great Georg Cantor did not only teach us about encodings of pairs, but also created the
realm of set theory. In this exercise, we shall praise this idea by encoding basic set-theoretic
notions using our beloved Haskell lists: we say that a list l :: [Integer] is a set if and only
if l contains no duplicates.

a) Search for the function nub in Data.List on Hoogle (use your VSCodium-Hoogle-Plugin).
Use it to define a function toSet :: [Integer] -> [Integer] such that toSet l re-
moves all duplicates of l.

b) Define a function isSet :: [Integer] -> Bool such that isSet l holds if and only if l
is a set. Check that isSet (toSet s) holds using QuickCheck.

1

https://home.in.tum.de/~raedle/
https://www21.in.tum.de/
http://www21.in.tum.de/~nipkow/
https://home.in.tum.de/~raedle/
https://www21.in.tum.de/~stevensl/
https://www21.in.tum.de/~kappelmk/
https://www21.in.tum.de/~eberlm/
https://fpv.in.tum.de
https://hochschultage-bayern.de/dezentrale-veranstaltungen/
https://studentsforfuture.info/public-climate-school/
https://studentsforfuture-muc.de/assets/downloads/PCS3_MUC_Slides.pdf
https://en.wikipedia.org/wiki/Axiom_schema_of_specification
https://en.wikiquote.org/wiki/Georg_Cantor#Quotes_about_Cantor

c) Define a function union :: [Integer] -> [Integer] -> [Integer] such that union s t

returns the union s ∪ t. Write some QuickCheck tests to verify your implementation:

• Check that union s t indeed returns a set.

• Mathematically, we have a ∈ S ∪ T if and only if a ∈ S or a ∈ T . Check that your
implementation satisfies this property.

d) (Optional) Define a function intersection :: [Integer] -> [Integer] -> [Integer]

such that intersection s t returns the intersection s∩t. Again, write some QuickCheck
tests to verify your implementation.

e) (Optional) Define a function diff :: [Integer] -> [Integer] -> [Integer] such that
diff s t returns the difference s \ t.

Note: You can use quickCheckWith (stdArgs { maxSize=4, maxDiscardRatio=40 }) to check
your properties. This will cause QuichCheck to only generate small parameters (up to size 4)
and give up if the number of discarded tests exceeds 40. You can use verboseCheckWith instead
of quickCheckWith to see all generated parameters.

Exercise T2.3 Fract
ions

We can represent a fraction a
b as a tuple (a,b). Two fractions should be equal whenever they

represent the same value, e.g. (1,2) and (3,6) represent the same value.

a) Write a function

eqFrac :: (Integer , Integer) -> (Integer , Integer) -> Bool

that decides whether two fractions are equal.

b) Write some QuickCheck tests that verify interesting properties of eqFrac, e.g. reflexivity,
symmetry, the cancellation law m/n = (m · k)/(n · k), etc.

Exercise T2.4 (Optional) Potentially Dangerous2
22

2

The function

pow2 :: Integer -> Integer

pow2 0 = 1

pow2 n | n > 0 = 2 * pow2 (n - 1)

implements n 7→ 2n für n ≥ 0. For a given n, the computation takes n steps. For example:

2100 = 2 · 299 = 2 · 2 · 298 = 2 · 2 · 2 · 297 = · · · =
100 times︷ ︸︸ ︷

2 · 2 · . . . · 2 · 1

Create a more efficient version that takes at most d2 log2 ne steps. The identities 22n = (2n)2

and 22n+1 = 2 · 22n might be useful. For example:

2100 = (250)2 = ((225)2)2 = ((2 · 224)2)2 = ((2 · (212)2)2)2 = ((2 · ((26)2)2)2)2

= ((2 · (((23)2)2)2)2)2 = ((2 · (((2 · 22)2)2)2)2)2

2

Bohua (1) OmegaAlman (2)

Nicht die Kette (3)

Mohammad (4)
30 Seconds
to Marth (5)

Jules (6)

Player Dominion Dominators

1 {4} {2, 3, 5, 6}
2 {1} {3, 4, 5, 6}
3 {1, 2, 4, 5} {6}}
4 {2} {1, 3, 5, 6}
5 {1, 2, 4, 6} {3}}
6 {1, 2, 3, 4} {5}

Figure 1: An example tournament graph and the corresponding lists of dominions and dominators for
each player.

Homework

You need to collect 7 out of 10 points (P) to collect a coin.

Hint: some functions from the List library may be useful for these exercises.

Exercise H2.1 Guessing games [a: 2P, b: 2P]

This exercise is all about games; however, not your everyday boring games like Catch but rather
exciting mathematical guessing games. As it would disappointing to just guess the winner of a
game, we instead want to calculate the winner of the following games using the exciting Haskell
programming language. In both exercises, the input is a list of pairs where the first component
of the pair is the name of the player and the second component is a number representing the
player’s bid. You may assume that there is at least one player, that the names are unique and
that the bids lie between 0 and 100.

a) The first game is “Guess 2
3 of the average”. Let a be the avarage of the player’s bids. Write

a function twoThirdsAverageWinners :: [(String, Int)] -> [String] that outputs
those players whose guess is the least far off from b2∗a3 c. The order of the players does not
matter.

b) The second game is “Unique bid auction” which is an auction with a spin. Write a function
lowestUniqueBidder :: [(String, Int)] -> String that outputs the bidder with the
lowest unique bid. If no such player exists, output "Nobody".

Exercise H2.2 Choose only the best [a,b,c,d,e,f: 1P each]

A long-standing tradition of (part of) the Chair for Logic and Verification is holding tournaments
in Super Smash Bros.TM Melee for the Nintendo® GameCube.

The tournament mode is a round robin: each of the players (labelled 1 to n) plays against each
other player exactly once (no ties). The result is a tournament graph (see Figure 1), in which
an edge i→ j indicates that player i defeated player j.

3

https://en.wikipedia.org/wiki/Guess_2/3_of_the_average
https://en.wikipedia.org/wiki/Unique_bid_auction

The MC Sr now has the task to determine who the best players are. Half-remembering some
social choice theory he learnt long ago, he wants to use some of these fancy concepts: given the
tournament results, you will implement various ways of returning a set of winners.

The input that you receive is a list of lists tournament :: [[Int]], where the i− 1-th element
contains the list of all the players that player i defeated. This is called the dominion of player
i, formally D(i) := {j | i→ j} You can (and should) use the following function to compute it:

dominion :: [[Int]] -> Int -> [Int]

dominion tournament i = rel !! (i - 1)

To find out whether i defeated j, you can write j `elem`dominion rel i.

You may also use the following function that returns the list of all players (i.e. [1, . . . , n]):

players :: [[Int]] -> [Int]

players tournament = [1.. length tournament]

The MC would now like you to implement three different ways to determine the best overall
players: Copeland’s rule (CO), the uncovered set (UC), and the top cycle (TC). Your plan of
attack is to implement the following functions:

a) The dominators of i are the set of all players who defeated i, i.e. D(i) := {j | j → i}.

dominators :: [[Int]] -> Int -> [Int]

dominators tournament i = ...

b) We say that i covers j (written as i C j) if i defeated everyone that j defeated.

covers :: [[Int]] -> Int -> Int -> Bool

covers tournament i j = ...

c) A set of players X is called dominant if it is non-empty and every player in it defeated
every player not in it.

dominant :: [[Int]] -> [Int] -> Bool

dominant tournament is = ...

d) CO is defined as the set of those players who defeated the most other players, i.e. who
have the maximum dominion size, i.e. CO := arg maxi |D(i)|.

copeland :: [[Int]] -> [Int]

copeland tournament = ...

Hint: the function maximum xs tells you what the largest element in xs is.

e) UC is the set of all players that are covered by no one (except themselves, of course), i.e.
UC := {x | @y. y 6= x ∧ y C x}.

uncoveredSet :: [[Int]] -> [Int]

uncoveredSet tournament = ...

4

f) TC is the smallest dominant set (this is unique).

topCycle :: [[Int]] -> [Int]

topCycle tournament = ...

Hint: the function subsequences from Data.List might help you to compute the set of
all “subsets” of {1, . . . , n}. You can use the helper function shortest from the template
to get the shortest list from a list of lists.

Note that whenever one of your functions receives a set of players as an input from the MC Sr’s
tests, you may assume that it is sorted and contains no duplicates. When you return a set, it
need not be sorted and it may contain duplicates.

Example: Let’s look at our example graph in Figure 1. The dominions and dominators of
each player are listed in the table. Players 3,5,6 cover players 1,2,4, and these are the only
coverings. Consequently, UC = {3, 5, 6}. Players 3,5,6 all have 4 wins, so CO = {3, 5, 6}. The
only dominant sets are {3, 5, 6} and {1, 2, 3, 4, 5, 6}, so TC = {3, 5, 6}.

Only for the Wettbewerb: the only functions that count for the competition are the three
last ones and the winning criterion is again least number of tokens. You may use all other
functions from Exercise H2.2 for free when implementing them. However: to make things a bit
more interesting, the MC Sr requires you to implement these functions in such a way that they
cope with large inputs (e.g. 1000 players) and still terminate in a reasonable time (i.e. a few
seconds). You can check whether that is the case with some of the provided tournament data
on Zulip.

Climate change isn’t an “issue” to add to the list of things to worry about, next
to health care and taxes. It is a civilizational wake-up call. A powerful message
– spoken in the language of fires, floods, droughts, and extinctions – telling us
that we need an entirely new economic model and a new way of sharing this
planet. Telling us that we need to evolve.

— Naomi Klein in “This Changes Everything: Capitalism vs. the Climate”

5

https://zulip.in.tum.de/#narrow/stream/147-FPV-Exercise02/topic/Competition.20test.20data
https://zulip.in.tum.de/#narrow/stream/147-FPV-Exercise02/topic/Competition.20test.20data
https://en.wikipedia.org/wiki/Naomi_Klein
https://en.wikipedia.org/wiki/This_Changes_Everything_(book)

