
Technical University of Munich WS 2020/21
Chair for Logic and Verification 20.11.2020

Prof. Tobias Nipkow, Ph.D. Deadline: 30.11.2020, 23:59
J. Rädle, L. Stevens, K. Kappelmann, MC Sr Eberl

Functional Programming and Verification
Sheet 3

Sustainability Exercises

The Public Climate School is taking place this week (23.–27.11). How about you watch
some of the lectures as part of this exercise sheet? ;) You can find the programme here
https://studentsforfuture.info/public-climate-school/

Tutorial Exercises

Exercise T3.1 Good Style, Bad Style

Your tutor will give you a brief introduction about how to and how not to do case distinctions
and recursions on lists. They will implement a recursive function on lists in two ways: using
pattern matching and using library functions (null, head, tail), etc.

For the future: never use the bad style again.

Exercise T3.2 Matrices

a) Write a function dimensions :: [[a]] -> (Int,Int) that determines the dimensions of
its input matrix encoded as a list. For example, the matrix1 2 3 4

5 6 7 8
9 10 11 12

will be encoded as [[1,2,3,4],[5,6,7,8],[9,10,11,12]]. Calling dimensions on this
matrix should return (3,4). If the input is not a valid matrix, e.g. if one row contains
fewer elements than the other rows, the function should return (-1,-1).

b) Define a predicate isSquare :: [[a]] -> Bool that returns true iff its input is a square
matrix. Also define predicates

canAdd :: [[a]] -> [[a]] -> Bool

canMult :: [[a]] -> [[a]] -> Bool

that determine whether their input matrices have the right dimensions to be added or
multiplied together.

c) Write a function diagonal :: [[a]] -> [a] that returns the diagonal of a square matrix
encoded as a list. For example, the diagonal line of the matrix1 2 3

4 5 6
7 8 9

1

https://home.in.tum.de/~raedle/
https://www21.in.tum.de/
http://www21.in.tum.de/~nipkow/
https://home.in.tum.de/~raedle/
https://www21.in.tum.de/~stevensl/
https://www21.in.tum.de/~kappelmk/
https://www21.in.tum.de/~eberlm/
https://fpv.in.tum.de
https://studentsforfuture.info/public-climate-school/

above matrix is [1,5,9].

(Optional) Can you extend this to a function that takes the diagonal line of a cube?

d) Define functions

matrixAdd :: [[Integer]] -> [[Integer]] -> [[Integer]]

matrixMult :: [[Integer]] -> [[Integer]] -> [[Integer]]

which add/multiply two matrices.

Hint: for multiplication, you may want to use the transpose function from the List

library.

Exercise T3.3 Merge Sort

In the lecture you have seen a Haskell implementation of Quicksort. In this assignment you will
have to implement Merge Sort in Haskell.

Recall: Merge Sort is based on the divide-and-conquer principle. First, it splits a list in two
halves and sorts these lists separately. In the conquer step, it merges the two sorted lists. Note
that this can be done recursively by comparing the two heads of the lists.

• Implement a Haskell function mergeSort :: [Integer] -> [Integer] that sorts an in-
teger list in ascending order by using Merge Sort. To split the list, you can use the function
splitAt.

• Implement a function adjacentPairs :: [a] -> [(a,a)] that generates all adjacent
pairs of elements from a given list.

• Test your sorting function by checking whether all adjacent pairs of its result are indeed
in the correct order.

Exercise T3.4 (Optional) Collatz Conjecture

Lothar Collatz

We define the following function f : N→ N

f(n) =

1, if n = 1
n
2 , if n is even

3n + 1, otherwise

and, for every n ∈ N+, the sequence

c0 = n, ci+1 = f(ci).

The longstanding Collatz conjecture states that for every n ∈ N+, the
sequence (ci)i∈N stabilises to 1.

a) Write a function collatz :: Integer -> [Integer] such that
collatz n computes the sequence (ci)i∈N until it stabilises at 1. For
example,

2

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Lothar_Collatz

collatz 12 = [12,6,3,10,5,16,8,4,2,1].

b) Write a quickCheck test that checks whether the collatz conjecture
holds for 1 ≤ n ≤ 100.

Homework

You need to collect 7 out of 9 points (P) to collect a coin.

Exercise H3.1 Sudo ku –solve

In this exercise, you will implement a backtracking based Sudoku solver. This means that you
start inserting numbers until you either found a solution or the Sudoku is in an illegal state. In
the latter case, you go back (backtrack) until the Sudoku is legal again and try the next number,
eventually arriving at the right combination.

A Sudoku is described as a list of list of Ints ([[Int]]). Sudokus always have a square shape,
but their size can vary. For example, there are 4× 4, 9× 9, and 16× 16 Sudokus. Every n× n
Sudoku will be a list containing n lists of length n, where each entry/cell is a number in [0..n].
The number 0 represents an empty cell.

A given n × n Sudoku is further divided into
√
n subgrids/squares. The usual rules of Sudoku

then apply:

1. Each row must contain the numbers [1..n].

2. Each column must contain the numbers [1..n].

3. Each square must contain the numbers [1..n].

Hint: You can use the function intRoot from the template to obtain the square root of an Int.

a) We start by defining different Methods to access our Sudoku:

i) Implement a function selectRow :: [[Int]] -> Int -> [Int], such that
selectRow sudoku n returns the nth row of the Sudoku (index starts at 0).

ii) Implement a function selectColumn :: [[Int]] -> Int -> [Int], such that
selectColumn sudoku n returns the nth column of the Sudoku (index starts at 0).

iii) Implement a Function selectSquare :: [[Int]] -> Int -> [Int], such that
selectSquare sudoku n returns the nth square of the sudoku. Squares are numbered
from left to right, top to bottom and their content is read in the same way.

Example: Given the following sudoku:

8 9 6|7 5 2|4 1 3

5 2 3|6 1 4|9 8 7

4 7 1|8 9 3|2 6 5

-----+-----+-----

9 5 4|3 6 7|8 2 1

3 1 8|2 4 5|7 9 6

3

7 6 2|1 8 9|5 3 4

-----+-----+-----

6 8 9|5 7 1|3 4 2

2 4 7|9 3 6|1 5 8

1 3 5|4 2 8|6 7 9

we have

i) selectRow sudoku 0 = [8,9,6,7,5,2,4,1,3],

ii) selectColumn sudoku 0 = [8,5,4,9,3,7,6,2,1],

iii) selectSquare sudoku 3 = [9,5,4,3,1,8,7,6,2], and

iv) selectSquare sudoku 2 = [4,1,3,9,8,7,2,6,5].

Hint: You can use execute putStr (showSudoku s) from the template to pretty-print
the Sudoku s.

b) Next we want to check if a given (not necessarily completety filled) Sudoku is in a valid
state, that is in every row, column, and square, every number appears only once. Reminder:
0 is not an actual entry but represents an empty cell.

Do so by implementing the function isValidSudoku :: [[Int]] -> Bool.

Hint: You might want to use a function isValidSubsection [Int] -> Bool that checks
if a given row, column, or square follows the rules.

c) As a next step, we want to modify a Sudoku. To do so, you have to implement a function
setCell :: [[Int]] -> (Int, Int) -> Int -> [[Int]], such that
setCell sudoku (x, y) n returns a Sudoku with the cell at position (x,y) set to n.

d) Finally – time to start solving Sudokus! Your final task is to write a function
solveSudoku :: [[Int]] -> [[Int]] that returns a solution for a given Sudoku. If the
given Sudoku is not solvable, it returns the empty list instead. You can test your imple-
mentation with the sudoku provided in the template; it should not take more than a few
seconds. Your implementation should use a backtracking-based approach – or something
even better! The MCs have no time to waste – no homework points are awarded for slow,
brutforce implementations.

Hint: If you are motivated, consider using the more idiomatic approach of Zippers to
mutate a list instead of relying on setCell.

Wettbewerb: As the fundamental theorem of modern society tells us: time is money.
The MCs hence ask you to maximise money by not minimising tokens for a change, but by
minimising the time burnt solving Sudokus. Only the fastest solvers must come to fame.

If you want to participate in the Wettbewerb as a guest, please send an e-mail to
fpv@in.tum.de to make us aware of it.

This exercise was designed and implemented in coorporation with our tutors. Special thanks to
all of them!

4

http://learnyouahaskell.com/zippers

Haskell is concise
Functional, well-typed, and neat
It is like Haiku

— Haskell’s Haiku webpage

5

https://en.wikipedia.org/wiki/Haiku
https://wiki.haskell.org/Haiku

