
Technical University of Munich WS 2020/21
Chair for Logic and Verification 04.12.2020

Prof. Tobias Nipkow, Ph.D. Deadline: 14.12.2020, 23:59
J. Rädle, L. Stevens, K. Kappelmann, MC Sr Eberl

Functional Programming and Verification
Sheet 5

Exercise T5.1 Be More General

We define functions sum :: Num a => [a] -> a and (++) :: [a] -> [a] -> [a] as follows:

sum xs = sum_aux xs 0

sum_aux [] acc = acc

sum_aux (x:xs) acc = sum_aux xs (acc+x)

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

Use structural induction to show that

sum (xs ++ ys) = sum xs + sum ys

Exercise T5.2 Computation Induction

We define the functions sum :: Num a => [a] -> a and sum2 :: Num a => [a] -> [a] -> a:

sum [] = 0

sum (x:xs) = x + sum xs

sum2 [] [] = 0

sum2 [] (y:ys) = y + sum2 ys []

sum2 (x:xs) ys = x + sum2 xs ys

Use computation induction to show that sum2 xs ys = sum xs + sum ys.

The CYP syntax differs slightly from the one presented in the lecture. As an example, given
the following definition

myFunc xs [] = xs

myFunc [] (y:ys) = myFunc (y:ys) []

myFunc (x:xs) (y:ys) = myFunc (y:xs) ys ++ myFunc xs ys

CYP expects Proof by computation induction on xs ys with myFunc to start a com-
putation induction proof. Also note that computation induction was only added to CYP
a few days ago. You hence might have to reinstall cyp by first pulling the newest changes
from the repository.

1

https://home.in.tum.de/~raedle/
https://www21.in.tum.de/
http://www21.in.tum.de/~nipkow/
https://home.in.tum.de/~raedle/
https://www21.in.tum.de/~stevensl/
https://www21.in.tum.de/~kappelmk/
https://www21.in.tum.de/~eberlm/
https://fpv.in.tum.de


Exercise T5.3 Type Inference

Determine the most general types of the following definitions:

f u v = u < 0 && u < v

f u v w = u + v

f u v = min (head u) v

f = 0

f u v = let w = u && v in []

f u v = let w = u && v in if w then [u] else []

f u v = concat [u | (d,_)<-v, u==d]

f u = [x | ((x:xs):zs)<-u]

Use the type-inference algorithm presented in the lecture once. Solve the other cases informally,
collecting and solving type-equality and typeclass constraints using your intuition and ad-hoc
reasoning.

Homework

You need to collect 2 out of 3 points (P) to collect a coin.

Exercise H5.1 (Wettbewerb) Cubing the Cuboid [1P]

Note: While this exercise is not difficult to implement as such (the MC Sr’s solution is 3 lines of
easy Haskell), it is a bit of a brain teaser. If you’re just looking for a few quick homework points and
don’t care about the Wettbewerb, you might want to start working on the other homework exercises
first.

The MC Sr wants to build a model of the logo of his favourite proof assistant out of wooden
cubes. To this purpose, he purchased a cuboid-shaped piece of wood (the dimensions are all
multiples of 1 cm). He now wants to completely carve up this piece of wood into cubes. However,
since he vastly overestimated how much wood he needs, he wants to cut it up in such a way that
the total number of cubes is as small as possible. To make things easier, he only wants cubes
whose sizes are powers of two in centimetres (i.e. 1 cm, 2 cm, 4 cm, 8 cm, etc.)

Your task is to write a function decompose :: [Integer] -> [Integer] that, given the di-
mensions of the piece of wood, returns how many cubes of each type the optimal decomposition
has (in ascending order by size, with no trailing zeroes). Because the MC Sr is a big fan of
pointless generalisation, he also requires your function to work not just in 3 dimensions, but in
any dimension ≥ 1. See Figures 2 and 3 for an illustration.

Example:

decompose [123] = [1,1,0,1,1,1,1]

decompose [6, 5] = [6, 2, 1]

decompose [9, 6] = [6, 4, 2]

2

https://isabelle.in.tum.de
https://en.wikipedia.org/wiki/Cuboid


decompose [8, 4, 4] == [0, 0, 2]

decompose [10, 10, 10] == [0, 61, 0, 1]

decompose [10, 5, 5] == [90, 4, 2]

decompose [6, 5, 4] == [24, 4, 1]

decompose [9, 18, 27, 36] == [22680 , 1512, 48, 24]

Hint: It is not recommended to brute-force all decompositions. You have to use your geometric
intuition to come up with a clever recursion. You can try starting in 1 or 2 dimensions and then
generalise your approach to n dimensions. The generalisation should be straightforward.

Wettbewerb only: For the Wettbewerb, the MC is looking for optimal performance. For
reference, the MC Sr’s solution takes 5 s for a 104-dimensional cube of size 1012. Should several
submissions have similar performance, he will rank them according to the somewhat arbitrary
subjective criteria of brevity and elegance (not number of tokens).

Additional Wettbewerb challenge: Geometric intuition is very useful, but it can easily mis-
lead you. You have the Artemis tests to guide you, of course (if they go through, your algorithm
is probably correct). However, the MC Sr likes proofs even better than tests. In accordance
with the current proof-heavy focus of the lecture, he will therefore award an appropriate number
of bonus Wettbewerb points to the first few students to submit a convincing proof that their
approach is correct. You can text the MC Sr. on Zulip or send him an e-mail. Beware though:
the MC Sr is an awful pedant!

Exercise H5.2 Map and Territory [1P]

An anonymous MC loves accumulators and has written this slightly inelegant (and inefficient)
version of the map function:

accum f [] ys = ys

accum f (x:xs) ys = accum f xs (ys ++ [f x])

Prove that this function is indeed equivalent to plain old map:

accum f xs [] .=. map f xs

We have provided you with two helpful lemmas about the ++ function in the template.

3



0 16 20 22 23

Figure 1: An optimal decomposition of a one-dimensional cuboid of size 23 into one-dimensional cubes
of sizes 16, 4, 2, and 1. The type of the decomposition is [1, 1, 1, 0, 1].

Figure 2: An optimal decomposition of a 9 × 6 cuboid. The type of the decomposition is [6, 4, 2].

Figure 3: An optimal decomposition of a 6× 5× 4 cuboid into one cube of size 4 (red), four cubes of size
2 (blue), and 24 cubes of size 1 (white). The type is therefore [24, 4, 1].

4



Exercise H5.3 Haarspalterei [1P]

In the lecture, function splice was introduced that splices two lists together like a zipper. Using
another function from the lecture, namely drop2, we now define the inverse function unsplice

that unzips a list into a pair of lists:

unsplice [] = Pair [] []

unsplice (x : xs) = Pair (drop2 (x : xs)) (drop2 xs)

We write Pair a b instead of (a, b) due to technical limitations imposed by CYP. Your task
is to prove that unsplice behaves as a right-inverse to splice, i.e. using computation induction
prove that

splice (fst (unsplice xs)) (snd (unsplice xs)) .=. xs

You will also need case analysis on the datatype of lists for which the syntax in CYP looks
as follows:

Proof by case analysis on List xs

Case []

Assumption: xs .=. []

Proof

...

(by ...) .=. f xs

(by Assumption) .=. f []

...

QED

Case x:xs'
Assumption: xs .=. x:xs'
Proof

...

(by ...) .=. f xs

(by Assumption) .=. f (x : xs')
...

QED

QED

Ich mag Philosophen nicht, die das Haar auf fremden Köpfen spalten. Noch dazu
mit einem Beil.

— Stanis law Jerzy Lec

5


