
1

Technical University of Munich WS 2020/21
Chair for Logic and Verification 18.12.2020

Prof. Tobias Nipkow, Ph.D. Deadline: 11.01.2021, 23:59
J. Rädle, L. Stevens, K. Kappelmann, MC Sr Eberl

Functional Programming and Verification
Sheet 7

Exercise T7.1 Is This a Type Class?

Define a type Fraction with one constructor Over :: Integer -> Integer -> Fraction to
represent fractions over integers.

1. Define an instance Num Fraction.

class Num a where

(+), (-), (*) :: a -> a -> a

negate :: a -> a

fromInteger :: Integer -> a

-- The functions 'abs' and 'signum' should

-- satisfy the law: abs x * signum x = x

abs :: a -> a

signum :: a -> a

(Optional) After each operation that may increase the numerator/denominator, the frac-
tion should be reduced as far as possible.

2. Haskell can automatically derive instances for Eq (and also Show) using deriving Eq. Is
this automatically derived instance useful in this case?

Note:

• Num contains no division operator. (/) is defined by the typeclass Fractional. In a more
extensive library, one would hence declare Fraction as an instance of Fractional.

• The function fromInteger is used by Haskell to embed integers into the required type.
The expression 3 :: Fraction is hence equivalent to (fromInteger 3) :: Fraction.
The function fromRational in Fractional does the same for decimal numbers (e.g. 3.14).

Exercise T7.2 I Can’t See The Forest For The Trees

1. In a binary tree, we can only descend to the left or to the right. Define a data type Tree

with constructors Leaf and Node for binary trees.

2. Implement a function sumTree :: Num a => Tree a -> a that returns the sum of all
values in a tree.

3. Implement a function cut :: Tree a -> Integer -> Tree a that cuts off a tree after
a given height.

4. Implement a function foldTree :: (a -> b -> b) -> b -> Tree a -> b that folds a
function over a tree. The fold should process the right children of a node first, then the
node itself, and lastly the left children.

ff

f f

https://home.in.tum.de/~raedle/
https://www21.in.tum.de/
http://www21.in.tum.de/~nipkow/
https://home.in.tum.de/~raedle/
https://www21.in.tum.de/~stevensl/
https://www21.in.tum.de/~kappelmk/
https://www21.in.tum.de/~eberlm/
https://fpv.in.tum.de

2

5. Use foldTree to implement a function inorder :: Tree a -> [a] that returns all ele-
ments of a tree in left to right order.

6. (Optional) Use foldTree to create an instance of Foldable Tree.

Exercise T7.3 by simp

Give alternative definitions with as few parameters to the left of the equality symbol as possible
for the following functions. Simplify all λ-expressions and do not introduce new ones. Make use
of the combinators in Data.Function.

f1 xs = map (\x -> x + 1) xs

f2 xs = map (\x -> 2 * x) (map (\x -> x + 1) xs)

f3 xs = filter (\x -> x > 1) (map (\x -> x + 1) xs)

f4 fs = foldr (\f acc -> f acc) 0 (map (\f -> f 5) fs)

f5 f g x = f (g x)

f6 f (x,y) = f x y

f7 f x y z = f z y

f8 f g x y = f (g x y)

Homework

As one can tell based on the fabulous snowflakes frame of this document, this week is rather
unique. Indeed, it is our Christmas special, which is why we host a fun game exercise! This
special game can be found on exercise sheet 08, and you can not only take part in a fun online
tournament, but also collect an additional coin and sweet Wettbewerb points for it.

However, we also need to do serious business, and so there are some (not so special) exercises
for you below to collect a coin too.

You need to collect 11 out of 15 Christmas stars (?) to collect a coin.

Exercise H7.1 Christmas Trees! [a–d,f: 1? each, e: ??]

We define a datatype of trees and, in addition, directions to navigate the tree. Here, L corres-
ponds to navigating to the left subtree while R corresponds to the right subtree.

data Tree a = Leaf | Node (Tree a) a (Tree a)

data Direction = L | R

a) Write a function subtreeAt :: [Direction] -> Tree a -> Maybe (Tree a) that nav-
igates to the subtree specified by the list of directions and returns it (if it exists). For
example:

subtreeAt [L,R] (Node (Node Leaf 'a' (Node Leaf 'b' Leaf)) 'c' Leaf)

= Node Leaf 'b' Leaf

ff

f f

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Function.html
https://www21.in.tum.de/teaching/fpv/WS20/assets/ex08.pdf

3

b) Define a function rotateR :: Tree a -> Maybe (Tree a) that performs a right-rotation
on the tree. If that is not possible, return Nothing. The picture below exemplifies a right-
rotation.

s

l

A B

C

l

A s

B C

⇒

c) Now combine the approaches of the two previous functions in order to write a func-
tion rotateRAt :: [Direction] -> Tree a -> Maybe (Tree a) that performs a right-
rotation at the location specified by the list of directions.

The rest of the exercise concerns itself with right-linear chains which are a degenerate
version of trees that are isomorphic to lists. Drawn as a tree they look as follows:

n1

n2

. . .

nk

d) Define a function isRchain :: Tree a -> Bool that returns True if, and only if, the
given tree is a right-linear chain.

e) Every tree can be transformed into a right-linear chain using only right-rotations. In fact,
you need at most n rotations where n is the number of nodes in the tree. Implement
a function rotateRchainDirs :: Tree a -> [[Direction]] that returns a list l with
|l| ≤ n where each entry of the list is a list of directions specifying the subtree where a
right-rotation should be performed.

f) Write a function rotateRchain :: [[Direction]] -> Tree a -> Maybe (Tree a) that
performs all rotations in the order that the first argument specifies, i.e. it is expected that
rotateRchain (rotateRchainDirs t) t returns a right linear chain.

ff

f f

4

Exercise H7.2 Finite Data, Infinite Fun [a–d: 1? each, e+f: 2? each]

We define a typeclass Finite to represent finite types. An instance Finite a must give an
enumeration of all values of type a without duplicates:

class Finite a where

-- finite list of all values of type a without duplicates

enumerated :: [a]

We ignore that undefined is of any type in Haskell (i.e. undefined :: a for any type a) for
this exercise unless explicitly said otherwise.

a) Assuming there is an instance Finite a, define an instance Finite (Maybe a) for any
type a.

b) We define a data type Time that should store dates using the 24-hour clock convention
from 00:00:00 (midnight) to 23:59:59 (one second to midnight).

-- Time stores dates in this order: hours , minutes , seconds

-- For example , 17:32:59 is modelled as Time 17 32 59

data Time = Time Int Int Int

Write an instance Finite Time that enumerates all valid Time values using the 24-hour
clock convention.

c) Assuming that there are instances Finite a and Finite b, define an instance Finite

(Either a b) for any types a and b. Recall that Either has exactly two constructors
Left :: a -> Either a b and Right :: b -> Either a b.

d) Assuming that there are instances Finite a and Finite b, define an instance Finite

(a, b) for any types a and b.

e) Assuming that there is an instance Finite a, define an instance Finite (Tree a) (as
defined in H7.1) of trees that contain each value of type a exactly once for any type a.

f) Assuming that there are instances Eq a, Finite a, Eq b, and Finite b, define an instance
Finite (a -> b) that enumerates the list of all total, surjective functions from a to b.

Reminder: A function f :: a -> b is total if it maps each value v :: a to some non-
undefined f v :: b. A function f :: a -> b is surjective if for each u :: b, there is
some v :: a such that f v = u.

Note: The empty function is the only function from an empty domain. The empty
function should be represented by either \x -> undefined or undefined.

ff

f f

5

We all wish you a merry Christmas and a happy new year!

Source: https://www.xkcd.com/835/

ff

f f

https://www.xkcd.com/835/

