
1

Technical University of Munich WS 2020/21
Chair for Logic and Verification 18.12.2020

Prof. Tobias Nipkow, Ph.D. Deadline: 11.01.2021, 23:59
J. Rädle, L. Stevens, K. Kappelmann, MC Sr Eberl

Functional Programming and Verification
Sheet 8

Homework

You need to collect 8 out of 10 Christmas stars (?) to collect a coin.

Exercise H8.1 So This Is Christmas Volume 2: Virus vs Antibodies [a–d: 1? each, e: 2?, f: 4?]

The MCs are drinking mulled wine, it is snowing on the lecture website, in other words: it is
Christmas time. And as it is tradition, every Christmas, the MC Jr organises a board game
night with his family, this year being no exception. While last year all parties involved had to
assemble domino blocks in clever ways, this year’s game, for no obvious reason, is a two player
game in which a virus fights against antibodies.

You must know, the MC Jr hates losing the Christmas board game night. Thanks to last year’s
FPV-students, however, his family stood no chance and the MC Jr was victorious last year. To
repeat his success, he wants to make sure that he gets enough practice before playing against his
family this Christmas. Sadly, real social interactions are an impossiblity these days and hence
practicing with his friends is out of the game; however, the MC Jr has another brilliant idea: he
simply instructs you to write an AI with which he can practice.

The main idea of the game is to simulate the fight between viruses and antibodies. Below, you
can find the rules of the game. Note that this is a functional programming lecture and not a
virology course, so there may be some medical inaccuracies – forgive us Mrs Ciesek and Mr
Drosten:

• The game is played by two players: Player +1 (Virus) and Player -1 (Antibodies).

• The game takes place on an n×m cell grid, where n,m ≥ 2.

• Initially, each cell is empty.

• In each turn, a player can either claim an empty cell by placing an orb in it or place
another orb in a cell that player already owns.

• A player cannot place orbs in cells claimed by the opponent.

• A cell is filled when it contains at least the same number of orbs as orthogonally adjacent
cells.

• When a cell is filled, the virus/antibodies overflow and attack the orthogonally adjacent
cells, moving one orb into each neighbour and converting existing orbs into their own kind.

• The game ends when either viruses or antibodies reach their goal of eliminating all orbs
of the enemy.

ff

f f

https://home.in.tum.de/~raedle/
https://www21.in.tum.de/
http://www21.in.tum.de/~nipkow/
https://home.in.tum.de/~raedle/
https://www21.in.tum.de/~stevensl/
https://www21.in.tum.de/~kappelmk/
https://www21.in.tum.de/~eberlm/
https://fpv.in.tum.de
https://www21.in.tum.de/teaching/fpv/WS20/
https://www21.in.tum.de/teaching/fpv/WS20/assets/blatt10_2019.pdf
https://www21.in.tum.de/teaching/fpv/WS19/wettbewerb.html#woche10
https://en.wikipedia.org/wiki/Sandra_Ciesek
https://en.wikipedia.org/wiki/Christian_Drosten
https://en.wikipedia.org/wiki/Christian_Drosten


2

A game board can be displayed by a two dimensional list, where each entry is either 0 if it is
unclaimed, +n if player +1 owns this cell and has n orbs in it, or −n if player -1 owns this cell
and has n orbs in it.

For example, if player +1 puts an orb at position (0, 1), the board [[1,2,-1],[2,0,0],[0,-1,1]

transitions to [[1,2,0],[0,2,1],[1,-1,1]]. Note that there were overflows in all cells of the
top row and in cell (1, 0).

Your task is to implement a strategy that chooses the next cell to place an orb in. To do so, the
MC Jr’s diligent tutors started to implement a framework for simulating such games. However,
just like last year, the MCs and all tutors are really busy buying Christmas presents auf den
letzten Drücker and were not able to finish the framework. You hence need to implement a few
more utility functions before you can write your strategy.

In the following, you may assume that all inputs are valid arguments – unless, of course, you
yourself pass potentially invalid inputs to some function. Here are the missing functions:

a) canPlaceOrb :: Player -> Pos -> Board -> Bool that checks if a player can put an
orb at the specified position on the given board.

b) The function hasWon :: Player -> Board -> Bool checks if the board state is in a
winning state. A game is won if the opponent controls no cells. It is additionally provided
with the player that made the last move (the only player that could have won). You can
assume that all players have made at least one move.

c) neighbours :: Size -> Pos -> [Pos] takes a position on a board of a given size and
returns a list of neighbouring positions. The order of the resulting list does not matter.
Example: neighbours (4, 6) (3, 5) = [(2, 5), (3, 4)] = [(3, 4), (2, 5)]

d) Next, implement updatePos :: (Int -> Int) -> Player -> Pos -> Board -> Board.
This function modifies a single cell on the board by changing the number of orbs in the
cell with the provided function and assigns the result to the passed player. You do not
need to handle any overflows here.

e) Finally, the function putOrb :: Player -> Pos -> Board -> Board should place an
orb for the given player at the given position. If this causes the cell to be filled, the cell
should overflow and attack the neighbouring cells as described above. This might cause
a neighbouring cell to overflow which will then attack neighbouring cells and so on, until
a stable state is reached. This process can continue after one player has won, potentially
never stabilizing. Make sure that your solution detects this and stops in a valid, reachable
state.

f) Now you can finally implement your strategy. You are provided an infinite1 list of random
numbers, your team (+1 or -1), and the current board state and you must return a position to
put an orb onto. Make sure that your strategy takes no longer than 1 second of CPU time per
move; for otherwise, you shall loose the game instantly.2

1We will talk about infinite lists later in the course; as for now, you can just assume that the passed list will
always contain one more element if needed.

2If your move takes less than 1 second, the remaining time will actually be added as a credit to your time balance

ff

f f



3

If your strategy needs to preserve some state between calls, you can implement strategyState
instead. This is a tuple of an initial state and a strategy function that additionally receives
the state and also additionally returns the next state. You may change the type argument
Int of StatefulStrategy to any other type that is useful for you. Your change is valid if the
call playAndPrint defaultSize strategyState strategyState still works in ghci. Do not
modify any other given type annotations. Do not remove strategyState even if you do not
make use of it directly.

You can simulate games with
playAndPrint defaultSize (wrapStrategy strategy) (wrapStrategy strategy) or
playAndPrint defaultSize strategyState strategyState. The output is the board state
that each call to a strategy receives, together with the selected position. Additionally it will
generate a link where you can view the entire game in your browser – pretty cool, no?

For the homework, you will face off the virtualisation of the MC Jr’s grandpa and sister in four
rounds. You will be awarded one glamorous ? for each win.

Wettbewerb: The MC Jr seeks for challengers, no victims. He badly needs to win the upcoming
familiy Christmas board game night. His sister is a mastermind, but she shall stand no chance if
he practices using only the very best strategies as submitted by you. Help him being triumphant
yet another time and his gratitude will be tremendous.

Implement the best strategy challenging the MC Jr, best being defined as the strategy that wins
the most games. To help you gauge the quality of your submission, the MC Jr’s tutors went
absolutely crazy and set up a fully-fledged competition website including rankings, statistics,
playbacks, and even bought a fancy domain: https://virusga.me.

Your submission will be simulated against your fellow students’ submissions as soon as pos-
sible given that you were able to beat the MC Jr’s grandpa on Artemis and you included the
{-WETT-}...{-TTEW-} tags. Please be patient though – there are quite a few students registered
for FPV. . . *flashbacks about last year’s simulation bugs and out-of-memory problems*

This exercise was designed and implemented in coorporation with our tutors. Special thanks to
all of them!

Haskell is faster than C++, more concise than Perl, more regular than Python,
more flexible than Ruby, more typeful than C#, more robust than Java, and has
absolutely nothing in common with PHP.

— Audrey Tang

for future invocations. However, you do not really have any way to measure the time during your strategy
invocation, so this might be more of a gimmick rather than being useful.

ff

f f

https://virusga.me
https://en.wikipedia.org/wiki/Audrey_Tang

