
Technical University of Munich WS 2020/21
Chair for Logic and Verification 08.01.2021

Prof. Tobias Nipkow, Ph.D. Deadline: 18.01.2021, 23:59
J. Rädle, L. Stevens, K. Kappelmann, MC Sr Eberl

Functional Programming and Verification
Sheet 9

Exercise T9.1 But wait, there is more!

It is common that one faces a situation in which one needs to make sure that a given list contains
at least one element. When trying to access the head of a list, for instance, one could wrap the
call to head like so:

if length xs > 0 then

... head xs ...

else

error "something went utterly wrong"

However, this approach causes run time errors when the programmer makes a mistake and passes
an empty list to given code fragment. In Haskell, one can use the type system to catch these
errors at compile time: we can construct a custom data type that simply does not include invalid
values.

a) Define a data type NonEmptyList, which represents a list that contains at least one element.

b) Write conversions between [a] and NonEmptyList a.

fromList :: [a] -> Maybe (NonEmptyList a)

toList :: NonEmptyList a -> [a]

c) Implement the functions nHead, nTail, and nAppend in analogy to head, tail, and (++).

d) Write a function nTake :: Integer -> NonEmptyList a -> Maybe (NonEmptyList a)

that takes the first n elements of a non-empty list. If the list does not contain enough
elements or is called with a non-positive value, nTake should return Nothing.

Your definitions need to fulfill the following criteria:

• They may not use library functions (note that non-empty lists are already included in
base).

• They may not cause runtime errors or loop indefinitely for any inputs.

Exercise T9.2 (Mirror . Mirror) On the Wall = On the Wall

Given the following definitions

data Tree a = Leaf | Node (Tree a) a (Tree a)

mirror Leaf = Leaf

mirror (Node l v r) = Node (mirror r) v (mirror l)

1

https://home.in.tum.de/~raedle/
https://www21.in.tum.de/
http://www21.in.tum.de/~nipkow/
https://home.in.tum.de/~raedle/
https://www21.in.tum.de/~stevensl/
https://www21.in.tum.de/~kappelmk/
https://www21.in.tum.de/~eberlm/
https://fpv.in.tum.de
https://hackage.haskell.org/package/base-4.14.1.0/docs/Data-List-NonEmpty.html
https://hackage.haskell.org/package/base-4.14.1.0/docs/Data-List-NonEmpty.html


id x = x

(f . g) x = f (g x)

show that mirror . mirror = id. You will have to use structural induction on trees.

Exercise T9.3 Logical Foreplay

You have already seen a data type for propositional formulas in the lecture. However, these
formulas are rather complicated to work with as they allow for arbitrary nesting of logical
operators.

In this exercise, we again use Haskell’s type system to fix this problem. We define a new data
type that only allows one to create propositional formulas in conjunctive normal form (CNF).
Such Formulas are particularly useful for automated theorem proving purposes as you will see
in the homework.

a) Create data types or type aliases for the following definitions. Make use of lists where
sensible.

a) A variable name is a string.

b) We have two polarities: positive and negative.

c) A literal combines a polarity and a variable.

d) A clause is a (possibly empty) disjunction of literals.

e) A formula in conjunctive normal form is a (possibly empty) conjunction of clauses.

Make your data type definitions derive instances for Eq.

b) Create Show instances for polarities and literals such that a negative literal ¬a is trans-
formed to "∼a" and a positive literal a to "a".

c) Implement the following utility functions:

a) lName returning the name of a literal.

b) lPos and lNeg transforming a variable to its corresponding positive and negative
literal, respectively.

c) The predicates lIsPos and lIsNeg returning True if and only if a given literal is
positive and negative, respectively.

d) lNegate negating a literal.

e) complements such that l1 `complements` l2 holds if and only if l1 is the negation
of l2 (or vice versa).

d) We define the type of valuations as type Valuation = [Name]. In contrast to the lecture,
we only save those variable names in our valuations that should be assigned to truth.

Implement a function eval :: Valuation -> ConjForm -> Bool that evaluates a for-
mula under a given valuation. Note that an empty clause corresponds to falsity since

2



it is the neutral element of the disjunction operator. Similarly, an empty conjunction
corresponds to truth as it is the neutral element of the conjunction operator.

Advice: create auxiliary functions that evaluate a literal and clause first.

e) Write a predicate clauseIsTauto that checks whether a given clause is a tautology without
using eval.

Homework

You need to collect 9 out of 14 points (P) to collect a coin.

Exercise H9.1 Stop, Lemma Time! [5P]

Prove the lemma as stated in h91.cthy using structural induction.

Exercise H9.2 (Wettbewerb) Talkin’ Bout A Resolution [c: 2P, e: 7P]

We are interested in the propositional satisfiability problem (SAT) that asks whether a given
propositional formula is satisfiable. Indeed, you have already seen a simple brut-force approach
to solve this problem in the lecture. However, the function there falls short in two categories:

1. It is very slow as it simply evaluates the formula under all possible valuations, answering
positively if some satisfying valuation is found.

2. It returns no proof certificate, that is a piece of data that confirms its answer and is easy
to check by external programs. Note that the function can readily be extended to return
a satisfying valuation, that is a model, in case of a positive answer. But what about
certificates for negative answers? How should such a certificate look like?

In this exercise, we solve the latter problem – and if you are motivated, also the former – using
resolution.

Resolution is a very successful theorem proving method operating on formulas in CNF (cf tutorial
exercise 9.3). Note that a clause can naturally be identified as a set of literals and a formula in
CNF as a set of clauses. We will jump between both representations freely.

The core of propositional resolution is the following binary resolution rule:

L1 ∨ · · · ∨ Ln ∨A L′1 ∨ · · · ∨ L′m ∨ ¬A
L1 ∨ · · · ∨ Ln ∨ L′1 ∨ · · ·L′m

(resolve)

The idea of the rule is as follows: Assume you are interested in finding a model M for the two
premise clauses containing A and ¬A, respectively. If A is true, then ¬A is false and hence
one of L′1, . . . , L

′
m must be true in M . Likewise, if ¬A is true, then A is false and hence one of

L1, . . . , Ln must be true in M . Now as either A or ¬A must be true in M , we can conclude that
also one of L1, . . . , Ln, L

′
1, . . . , L

′
m must be true in M .

Simply speaking, a resolution prover then applies this rule to a given set of clauses as many
times as possible, potentially deriving a new clause in each step until either

3



1. the empty clause (falsity) is derived, and hence the original formula must be unsatisfiable,
or

2. no new clause can be derived (“the set of clauses is saturated”).

As a matter of fact, it is proven that in the second case, the orginal formula is indeed satisfiable
and one can extract a model using the saturated set of clauses. You can trust us on this one or
get started reading about it here.

In summary: a resolution prover can either return a list of resolution steps leading to the empty
clause or a model for the formula. Both are easily checkable by external programs and hence
good proof certificates. This solves the second of our aforementioned problems.

In practice, when saturating a set of clauses, one wants to avoid blindly re-checking all pairs
of clauses in each iteration. One can do so by splitting the set of clauses into a processed set
P and an unprocessed set U . In the beginning, all clauses are unprocessed. In each iteration,
one then selects and removes a clause from U , only resolves it with clauses from P , and then
adds the newly derived clauses to U and the selected clause to P . This way, one never checks
whether two clauses can be resolved with each other more than once.

Putting all these thoughts together, we arrive at the following pseudo-code:

Algorithm 1: Simple propositional resolution-solver

1 Function resolution:
Input : Set of clauses C
Output: Resolution proof if C is unsatisfiable and a model otherwise

2 U = C -- unprocessed clauses
3 P = ∅ -- processed clauses
4 R = [] -- list of resolution steps
5 while U 6= ∅ do
6 uc = selClause(U) -- select next best clause
7 if uc = ∅ then return R -- found the empty clause → return resolution steps
8 U = U \ {uc} -- remove selected clause
9 (NR,NU) = resolvants(uc, P ) -- get resolvants & steps using uc and clauses in P

10 R = append(R,NR) -- add new resolution steps
11 U = U ∪NU -- add new clauses
12 P = P ∪ {uc} -- uc is now processed

13 end
14 return extractModel(P )

Okay, enough talking. Let’s get serious and implement such a solver.

For the Wettbewerb, your goal of course is to submit the most efficient resolution solver. To
give you a great deal of flexibility while avoiding duplicate efforts, you can change any of
the used data structures in Types.hs provided that you adapt the corresponding mapping
functions to our simple default representation. You can also change the behaviour and
signature of most functions if they preserve the correctness of your algorithm.

4

https://lara.epfl.ch/w/_media/sav08/gbtalk.pdf


For the tests and Wettbewerb benchmarks, you can also assume that all variables are labelled
by integers n with 1 ≤ n ≤ u for some u :: Int. Further Wettbewerb-remarks can be found
at the end of the sheet.

a) Implement the function resolve that takes a variable n and clauses cp and cn and resolves
cp with cn on the variable n while assuming that n occurs positively in cp and negatively
in cn.

b) In order to identify clauses in our resolution certificate R, we pair each clause with a
unique, incremental key (see type KeyClause). Each clause in the initial formula C will
be paired with keys {0, . . . , size(C) − 1}, where size(C) returns the number of clauses in
C (without removing duplicates). A resolution step r ∈ R then consists of the name of
the resolved variable as well as the keys of the clauses containing the positive and negative
occurence of the variable (in this order).

Write a function resolvants :: KeyClause -> KeyClause -> [(Resolve, Clause)]

that returns a list of all possible resolution steps and resulting clauses for two given clauses.

Note that the function call resolvants(uc, P ) in above pseudo-code just represents a call to
resolvants uc pc for each pc in P .

c) Write a function proofCheck :: ConjForm -> Proof -> Bool that checks a proof against
a given formula in CNF. Note that for resolution proofs, as stated above, each clause in
the initial formula C is paired with keys {0, . . . , size(C) − 1} (in order as given by the
passed list). Each resolution step then adds the next, corresponding key,clause-pair and
increments the key.

d) Write a clause selection strategy selClause :: SelClauseStrategy that picks the next
best clause from U . If U is empty, Nothing must be returned.

Note: Your strategy does not need to be sophisticated, but of course, we encourage you
to implement some good heuristics.

e) Implement resolutionParam that runs the resolution algorithm as sketched in the pseudo-
code on a passed formula using the passed clause selection strategy. It should return a
proof as well as all processed and unprocessed clauses (the latter is useful for debugging).

You can use the function extractModel from the template to obtain a model from a (up
to redundancy) saturated set of clauses.

The more efficient your solver is, the more points you will be awarded.

For the Wettbewerb, the MC Jr will evaluate your solver as instantiated in resolution against
different kind of problem instances, increasing the size of the instance in each step if needed.
The focus will be on contradictory formulas as this is where resolution provers really shine.

The MC Jr also provides you with some QuickCheck generators that you can use to test your
functions (or to stress test your competition submission). Feel free to share more generators
and particularly interesting formulas on Zulip and discuss your performance on them with your
peers. Think about formulas with with more than just a few hundred variables and clauses.

5



Here are some hints to optimise your implementation:

1. Lists are simple but can be slow (e.g. for lookups) – use efficient data structures.

2. Implement subsumption checking: a clause c is subsumed by a clause c′ iff c′ logically
entails c. Similarly, a set of clauses C ′ subsumes a clause c if some clause c′ ∈ C ′ subsumes
c. Note that subsumed clauses can safely be skipped and removed.

3. Tune your clause selection strategy.

4. Profile your program on large inputs. Here is a really nice video – part of an amazing
video series done by one of our tutors – to get started.

5. Duckduckgo for more efficient resolution variants.

6. Duckduckgo “literal selection strategies”.
7. Get a PhD in logic.

Please leave some comments for the MC Jr in order to understand your code. He is looking
forward to all your submissions!

There can be no doubt that the knowledge of logic is of considerable practical
importance for everyone who desires to think and infer correctly.

— Alfred Tarski

6

https://www.youtube.com/watch?v=pwcEUdf4Qmk
https://en.wikipedia.org/wiki/Alfred_Tarski

