
Technical University of Munich WS 2020/21
Chair for Logic and Verification 22.01.2021

Prof. Tobias Nipkow, Ph.D. Deadline: 01.02.2021, 23:59
J. Rädle, L. Stevens, K. Kappelmann, MC Sr Eberl

Functional Programming and Verification
Sheet 11

Tutorial Exercises

Exercise T11.1 Abstract Data Types: Maps

Note: Please use the templates AssocList.hs and AssocListTests.hs provided on moodle
for this exercise.

You have already seen association lists Eq k => [(k,v)] as a way to represent maps with keys
k und values v. In order to prevent user from creating invalid association lists (e.g. containing
multiple values for some key), we want to hide the implementation in a module.

1. Define a module AssocList that only exports a type Map k v and the following functions:

newtype Map k v = ...

empty :: Map k v

insert :: Eq k => k -> v -> Map k v -> Map k v

lookup :: Eq k => k -> Map k v -> Maybe v

delete :: Eq k => k -> Map k v -> Map k v

keys :: Map k v -> [k]

Calling insert with an existing key should replace the associated value. Internally, the
maps should be represented using association lists.

Note: Prelude also exports a function lookup. To prevent naming conflicts, you can hide
this import using import Prelude hiding (lookup).

2. Define a function invar :: Eq k => Map k v -> Bool in AssocList that checks whether
the map does not contain duplicate keys. Then define QuickCheck properties in a separate
module that check whether invar is invariant under all functions returning a map as
discussed in the lecture (slide 340).

Note: To check your properties, say prop_invarInsert, you need to explicitly tell
QuickCheck the types of the values to generate. For example:

quickCheck (prop_invarInsert :: Int -> String ->

AL.Map Int String -> Property)

3. We next check if our implementation (imported as AL.Map) behaves correctly when com-
pared to the Map datatype provided by Data.Map from the package containers (imported
as DM.Map). Define a function hom :: Ord k => AL.Map k v -> DM.Map k v that trans-
forms our maps to the one provided by the containers library. Then check whether AL.Map
simulates DM.Map by defining QuickCheck properties for every function in AssocList as
discussed in the lecture (slide 340).

1

https://home.in.tum.de/~raedle/
https://www21.in.tum.de/
http://www21.in.tum.de/~nipkow/
https://home.in.tum.de/~raedle/
https://www21.in.tum.de/~stevensl/
https://www21.in.tum.de/~kappelmk/
https://www21.in.tum.de/~eberlm/
https://fpv.in.tum.de
https://hackage.haskell.org/package/containers-0.6.2.1/docs/Data-Map.html

Exercise T11.2 Substitute Teacher

The following datatype represents a simplified version of Haskell:

data Term = Var String | Abs String Term | App Term Term

A program in this language is an instance of the datatype Term which is either

• just a variable, e.g. Var x, which corresponds to a function or a constant x,

• an anonymous function definition Abs x t, which corresponds to the lambda expression
(\x -> t) for a term t, or

• a function application f x where both f and x are terms themselves.

We distinguish between free and bound variables. A variable is bound if there exists an enclosing
lambda abstraction that binds it. All other variables are free, e.g. in the term (\x -> x y) z,
x is bound while y and z are free. Note that bound variable names are interchangeable whereas
this is not the case for free variables. For example, the terms (\x -> x y) and (\z -> z y)

are equal while the terms (\x -> x y) and (\x -> x z) are not equal. On the above datatype,
implement the following functions:

1. Define freeVars :: Term -> [String] which collects all free variables in a term.

2. In order to have a programming language, we need an evaluation function for our terms. To
this end, implement a function substVar :: String -> Term -> Term -> Term where
substVar x r t substitutes all free occurences of Var x in the term t by the term r. Now,
we can perform a single evalution step by evaluating a function application (\x -> t) r

to substVar x r t.

Important: the function substVar makes a key assumption about x, t and r. To find out
what the assumption is, think about what happens when substituting x with the variable
y in the equivalent terms (\y -> x y) and (\z -> x z).

3. (Bonus) Implement a capture-avoiding version of substVar.

Note: the above programming language is commonly known as λ-calculus and forms the basis
of most functional programming languages.

2

https://en.wikipedia.org/wiki/Lambda_calculus

Homework

You need to collect 3 out of 4 points (P) to collect a coin.

Exercise H11.1 Abstract Data Types: Graphs [1P]

In this exercise you will implement a module for directed graphs. It is up to you to decide how
you represent the graphs internally. Note that you may not use the containers package in this
exercise.

Define a module Graph that only exports a type Graph n and the following functions:

newtype Graph n = ...

empty :: Graph n

nodes :: Eq n => Graph n -> [n]

addEdge :: Eq n => (n,n) -> Graph n -> Graph n

fromEdgeList :: Eq n => [(n,n)] -> Graph n

neighbors :: Eq n => n -> Graph n -> [n]

isReachable :: Eq n => n -> n -> Graph n -> Bool

transpose :: Eq n => Graph n -> Graph n

empty should return an empty graph.

nodes g should return alist of all nodes in g.

addEdge (n,m) g adds a directed edge from n to m to the graph g. If a node is not yet part of
the graph, it is added implicitly by this function.

fromEdgeList es g adds the edges in the list es to an initially empty graph.

neighbors n g returns all nodes that are connected to n via an edge. If n is not a node in the
graph, it returns []. Make sure that the result does not contain duplicate nodes.

isReachable n m g returns True iff there is a path from n to m in g.

transpose g returns a graph where the direction of all edges in g has been reversed.

Note: In preparation for the exam, it might be a good exercise to implement some tests of your
graph module against an existing graph library, e.g. Data.Graph.

Exercise H11.2 Capture Me If You Can! [1P + 1P + 1P]

When implementing substVar in the the tutorial, we were faced with the problem of variable
capture due to name clashes. Consider the example from the tutorial exercise: if we substitute x
by y in the equivalent terms (\y -> x y) and (\z -> x z), we obtain the terms (\y -> y y)

and (\z -> y z), respectively. Those two terms are not equivalent anymore, e.g. evaluating
(\y -> y y) x and (\z -> y z) x gives different results.

One way to work around this problem is to make the substitution function capture avoiding, i.e.
if a free variable that we substitute into a term would be captured by an enclosing λ-abstraction,
we instead rename the variable that the λ-abstraction binds. In the example (\y -> x y), we

3

Philipp Wadler (designer of Haskell) in his legendary lambda calculus superman costume

could rename y to z which gives us (\z -> x z). Now we can substitute x by y without variable
capture.

Since implementing capture-avoiding substitution is quite tricky, we will instead change the
representation of terms. In this representation, we explicitely distinguish between free and
bound variables which eliminates the possibility of accidentally binding free variables:

infixr 5 :$:
data BTerm = Free String | Bound Int |

BAbs BTerm | BTerm :$: BTerm

The key difference is that we now have a nameless representation of bound variables where
the number of a bound variable Bound i tells us by which of the enclosing λ-abstraction that
variable is bound. More specifically, a bound variable Bound i is bound by the i-th enclosing
lambda abstraction. In other words, you have to go up i abstractions to find the binding λ-
abstractions if you view an instance of BTerm as a tree. To improve readability, we provide you
with an instance Show BTerm that invents names (prefixed by _) for bound variables. In order
to understand how binding of variables works, consider the picture below that illustrates the
binders of the term

BAbs $ (BAbs $ Bound 0 :$: (BAbs $ Bound 0)) :$:
(BAbs $ Bound 1 :$: Bound 0).

Note that $ refers to the standard function application operator in Haskell and :$: to the
function application constructor that we defined with the datatype BTerm.

λ (λ 0 (λ 0)) (λ 1 0)

Implement the following functions:

1. Define a function fromTerm :: Term -> BTerm that turns terms as introduced in the
tutorial into terms as explained above.

4

https://en.wikipedia.org/wiki/Philip_Wadler
https://youtu.be/IOiZatlZtGU?t=2007

2. Define a function reduce :: BTerm -> BTerm that evaluates the function application
BAbs t :$: r, i.e. that replaces all variables that are bound by the abstraction BAbs

by the term r.

3. Using the previous function, implement a function reduceFull :: BTerm -> BTerm that
evaluates function applications of the form BAbs t :$: r as long as the term contains
any.

If you implemented the above functions, then congratulations, you now have a Turing-complete
programming language. To try out your shiny new language, the template provides you with
functions to convert between integers and Church numerals, which were already introduced in
tutorial exercise 6.3. For example, try

fromChurchNum $ churchAdd (churchNum 10) (churchNum 12)

Nenn es dann, wie du willst,
Nenn’s Glück! Herz! Liebe! Gott
Ich habe keinen Namen
Dafür! Gefühl ist alles;
Name ist Schall und Rauch,
Umnebelnd Himmelsglut.

— Goethe’s Faust

5

https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Church_encoding
https://en.wikipedia.org/wiki/Faust

