Technical University of Munich WS 2020/21
Chair for Logic and Verification 15.01.2020

Prof. Tobias Nipkow, Ph.D. Deadline: 08.02.2021, 23:59
J. Radle, L. Stevens, K. Kappelmann, MC Sr Eberl

Functional Programming and Verification
Sheet 12

Tutorial Exercises

Exercise T12.1 Redexes

Identify all redexes in the following Integer-expressions. Determine for each redex whether it
is innermost, outermost, both, or neither.

1.1 + (2 * 3)

2.1 +2) x (2 +3)

3. fst (1 + 2, 2 + 3)

4. fst (snd (1, 2 + 3), 4)
5. (\x > 1 + x) (2 * 3)

Exercise T12.2 Reductions

Evaluate the following expressions according to the evaluation strategy as defined in the lecture
(slide with “principles of lazy evaluation”):

map (*2) (1 : threes) !! 1
(\f ->\x -> (x + £ 2) + x) (\y =>y % 2) (3 + 1)
head (filter (/=3) threes)

Which evaluations do not terminate?

The functions used in the expressions above are defined as follows:

map _ [1 = T[]
map f (x:xs) = f x : map f xs

filter [1 = [1I

filter f (x:xs8) | £ x = x : filter f xs
| otherwise = filter f xs
(x:xs) !'!' n | n == = x
| otherwise = xs !! (n - 1)
threes = 3 : threes

https://home.in.tum.de/~raedle/
https://www21.in.tum.de/
http://www21.in.tum.de/~nipkow/
https://home.in.tum.de/~raedle/
https://www21.in.tum.de/~stevensl/
https://www21.in.tum.de/~kappelmk/
https://www21.in.tum.de/~eberlm/
https://fpv.in.tum.de

Exercise T12.3 Nooooooonacci

The lecture presented the following implementation of £ib which produces an infinite list con-
taining all Fibonacci numbers, i.e. fibs = [0,1,1,2,3,5,8,13,...].

fibs :: [Integer]

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
Which functions can we use to evaluate the function partially? Discuss what happens if one
part of the list is evaluated and later accessed for a second time.

Now, consider an alternative implementation for fibs.

fibs2 :: [Integer]
fibs2 = map fib [0..]
where
fib 0 = 0
fib 1 =1
fib n = fibs2 !'! (n - 1) + fibs2 !! (n - 2)

Compare the latter implementation with the former one. Which function performs better and
how could the slower function be improved?

Why does the following implementation not give raise to a similar sharing behaviour?

fib :: Integer -> Integer

fib =0

fib 1 =1

fib n = fib (n - 1) + fib (n - 2)

Since normal Fibonacci numbers are boring, we want to generalise them to n-onacci numbers.
We can construct the n-onacci numbers by letting fo =0, f1 =0,..., fnpo =0, fn_1 = 1 and
fo = fa—n + fo—n+1 + -+ + fa—1. Implement the function nonaccis :: Int -> [Integer] in
two ways:
1. Come up with a function zipWithN ([al -> b) -> [[a]l]l -> [b] and define nonaccis
analogously to fibs.

2. Use fibs2 as a template to define nonaccis.

Homework

The FPV-Programming Contest

We are sorry to say: no, there is no Wettbewerb task this week. However, we are organising
the FPV-Programming Contest!

The contest will be of a similar nature as the ICPCs: teams of 2—-3 students try to solve as
many programming challenges as possible in a given time frame. The more challenges you
solve and the quicker you finish, the better. During the competition, there will be a live
scoreboard, listing all teams, their rank, and their solved problems. Needless to say, you will
only be allowed to solve the challenges using Haskell.

Not only will the top 30 teams be awarded prestigious Wettbewerb points, but you will also
collect a coin if you manage to solve at least a minimum number of tasks. Besides, it is a
nice way to see how much you progressed this semester and to have a fun evening with your
team mates! :)

The contest will take place on the late afternoon/evening of the 10th of February. Please
vote for your preferred timeslot on Zulip: here. You can sign up by sending an e-mail to
fpv@in.tum.de (click the link for a pre-filled e-mail) using the subject “contest registration”
and the following e-mail body format:

{"teamName": "teamnamel23","username":"lrzIdi"}
{"teamName": "teamnamel23","username":"lrzId2"}
{"teamName": "teamnamel23","username":"1lrzId3"}

where you need to replace teamname123 with your team’s name (lowercase letters and digits
only!) and the lrzlds by your team member’s LRZ-IDs (e.g. “ga00aa”). If you participate
in a team of 2, simply remove on line entry. If you are looking for a team, you can do so in
this thread on Zulip. See you at the contest!

You need to collect 4 out of 6 points (P) to collect a coin.

Exercise H12.1 To Infinity And Beyond! [141+41+1P]

For the following exercises, keep in mind that in Haskell xs ++ ys = xs if xs is infinite.

a) Implement a function allBinaries :: [String] that returns the infinite, ordered list of
all binary numbers, least significant bit first, no trailing zeros, i.e.
allBinaries = ["O","1","0O1","11","001",...].

b) Implement a function elements :: [[al]l -> [a] that returns all elements occuring in
the possibly infinite list of possibly infinite lists. Here are some valid examples:

elements [[1,2,3],[4,2]] = [1,2,3,4,2]
elements [[1,2,3],[4,2]] = [1,2,4,3,2]
elements [[1,2,3],[4,2]] /= [1,2,3,4]
elements [[1..]1,[01]1 /= [1..]1 ++ [0O]

https://en.wikipedia.org/wiki/International_Collegiate_Programming_Contest
https://zulip.in.tum.de/#narrow/stream/144-FPV-General/topic/Contest.20Time.20Poll/near/102583
mailto:fpv@in.tum.de?subject=contest%20registration&body=%7B%22teamName%22%3A%20%22yourteamname%22%2C%22username%22%3A%22lrzId1%22%7D%0D%0A%7B%22teamName%22%3A%20%22yourteamname%22%2C%22username%22%3A%22lrzId2%22%7D%0D%0A%7B%22teamName%22%3A%20%22yourteamname%22%2C%22username%22%3A%22lrzId3%22%7D
https://zulip.in.tum.de/#narrow/stream/144-FPV-General/topic/FPV.20Programming.20Contest.3A.20Team.20search/near/99409

Hint: follow an approach as done in Cantor’s proof of the countability of the rationals (cf.
this picture).

c) We define the types

data Tree = Node Tree Tree | Leaf
data Direction = L | R -- left and right
type Path = [Direction]

Write a function allFinitePaths :: Tree -> [Path] that takes a possibly infinite bin-
ary tree t :: Tree and returns a list of all finite paths from the root to any leaf of t.

d) We define a type of propositional formulas as follows:

type Var = Integer
data Formula = V Var | Formula :&: Formula | Not Formula

Now, given a possibly infinite list of variables vs, we are interested in the possibly infinite
list of all finite formulas containing variables in vs. Write a function
allFormulas :: [Var] -> [Formula] that is doing precisely that.

Hint: Make use of elements.

Exercise H12.2 Stonks only go up! [2P]

Your task is to write a main function that determines the average price of a specific stock in
a given time range. You are first given the name of the stock and, separated by a space, the
inclusive time range as a tuple, e.g. BB (0,5).

Then, a number of ticker prices on separate lines in the format GME,5,319 where 5 is the
timestamp and 319 is the price at that time. Read the prices from stdin until the user enters
quit. You should then compute the average price of the specified stock over all timestamps in
the range you were given in the beginning and print it to stdout. Use whole number division
(div) to compute the average. If there are no prices in the given range, you should print 0. You
may assume that the input is well-formed.

Here is an example interaction with the program (Lines starting with >> are inputs from the
user):

>> BB (0, 5)
>> TSLA,1,5
>> BB,1,10
>> GME, 1,20
>> BB,2,21
>> GME, 3,10
>> BB,7,30
>> quit

15

https://en.wikipedia.org/wiki/Pairing_function#/media/File:Cantor's_Pairing_Function.svg

Note: the timing of this exercise may seem awfully convenient but it is really an old exam
exercise.

I am incapable of conceiving infinity, and yet I do not accept finity.
— Simone de Beauvoir

https://en.wikipedia.org/wiki/Simone_de_Beauvoir

