Hype, hype, hype, who did win become 2nd place?

Hype, hype, hype, who did win become 2nd place?

Let's discuss the problems first ;)

Team Building

- Given (n, k), compute $n_{1}, n_{2}, n_{3}, n_{4}$ such that

Team Building

- Given (n, k), compute $n_{1}, n_{2}, n_{3}, n_{4}$ such that

1. $n_{i+1}=k n_{i}$

Team Building

- Given (n, k), compute $n_{1}, n_{2}, n_{3}, n_{4}$ such that

1. $n_{i+1}=k n_{i}$
2. $n_{1}+n_{2}+n_{3}+n_{4}=n$

Team Building

- Given (n, k), compute $n_{1}, n_{2}, n_{3}, n_{4}$ such that

1. $n_{i+1}=k n_{i}$
2. $n_{1}+n_{2}+n_{3}+n_{4}=n$

- We have

$$
\begin{aligned}
n & =n_{1}+n_{2}+n_{3}+n_{4} \\
& =n_{1}+k n_{1}+k^{2} n_{1}+k^{3} n_{1} \\
& =n_{1}\left(1+k+k^{2}+k^{3}\right)
\end{aligned}
$$

Team Building

- Given (n, k), compute $n_{1}, n_{2}, n_{3}, n_{4}$ such that

1. $n_{i+1}=k n_{i}$
2. $n_{1}+n_{2}+n_{3}+n_{4}=n$

- We have

$$
\begin{aligned}
n & =n_{1}+n_{2}+n_{3}+n_{4} \\
& =n_{1}+k n_{1}+k^{2} n_{1}+k^{3} n_{1} \\
& =n_{1}\left(1+k+k^{2}+k^{3}\right)
\end{aligned}
$$

- Hence $n_{i}=k^{i-1} \frac{n}{1+k+k^{2}+k^{3}}$

Incubator

We'll use multisets on this slide.

Incubator

We'll use multisets on this slide.

- Given a list of integers xs, compute

$$
\begin{aligned}
& \max _{n \in \mathbb{N}} n \cdot|\{x \in x s \mid x \leq n\}| \\
= & \max _{x \in x s} x \cdot|\{x \in x s \mid x \leq n\}|
\end{aligned}
$$

Incubator

We'll use multisets on this slide.

- Given a list of integers xs, compute

$$
\begin{aligned}
& \max _{n \in \mathbb{N}} n \cdot|\{x \in x s \mid x \leq n\}| \\
= & \max _{x \in x s} x \cdot|\{x \in x s \mid x \leq n\}|
\end{aligned}
$$

- Naive solution: $\mathcal{O}\left(|x s|^{2}\right)$

Incubator

We'll use multisets on this slide.

- Given a list of integers xs, compute

$$
\begin{aligned}
& \max _{n \in \mathbb{N}} n \cdot|\{x \in x s \mid x \leq n\}| \\
= & \max _{x \in x s} x \cdot|\{x \in x s \mid x \leq n\}|
\end{aligned}
$$

- Naive solution: $\mathcal{O}\left(|x s|^{2}\right)$
- Better: first sort xs to lower to $\mathcal{O}(\log (|x s|)|x s|)$:

Incubator

We'll use multisets on this slide.

- Given a list of integers xs, compute

$$
\begin{aligned}
& \max _{n \in \mathbb{N}} n \cdot|\{x \in x s \mid x \leq n\}| \\
= & \max _{x \in x s} x \cdot|\{x \in x s \mid x \leq n\}|
\end{aligned}
$$

- Naive solution: $\mathcal{O}\left(|x s|^{2}\right)$
- Better: first sort xs to lower to $\mathcal{O}(\log (|x s|)|x s|)$:
startupRevenue I = aux (sort I) (length I)
where

$$
\begin{aligned}
& \operatorname{aux}[x] 1=x \\
& \operatorname{aux}(x: x s) n=\max (x * n)(\operatorname{aux} x s(n-1))
\end{aligned}
$$

Tax Avoidance Scheme

Again, we'll use multisets.
${ }^{1}$ at least for all inputs we considered

Tax Avoidance Scheme

Again, we'll use multisets.

- Given $2 \leq a \leq 10^{10}$, compute $P \subseteq \mathbb{P}$ with $|P|$ minimal and

$$
a=\sum_{p \in P} p
$$

[^0]
Tax Avoidance Scheme

Again, we'll use multisets.

- Given $2 \leq a \leq 10^{10}$, compute $P \subseteq \mathbb{P}$ with $|P|$ minimal and

$$
a=\sum_{p \in P} p .
$$

- Goldbach tells us ${ }^{1}$: every even $n>2$ is the sum of two primes. Hence:

[^1]
Tax Avoidance Scheme

Again, we'll use multisets.

- Given $2 \leq a \leq 10^{10}$, compute $P \subseteq \mathbb{P}$ with $|P|$ minimal and

$$
a=\sum_{p \in P} p .
$$

- Goldbach tells us ${ }^{1}$: every even $n>2$ is the sum of two primes. Hence:

1. If a is prime, return 1
${ }^{1}$ at least for all inputs we considered

Tax Avoidance Scheme

Again, we'll use multisets.

- Given $2 \leq a \leq 10^{10}$, compute $P \subseteq \mathbb{P}$ with $|P|$ minimal and

$$
a=\sum_{p \in P} p .
$$

- Goldbach tells us ${ }^{1}$: every even $n>2$ is the sum of two primes. Hence:

1. If a is prime, return 1
2. If a is even, return 2
${ }^{1}$ at least for all inputs we considered

Tax Avoidance Scheme

Again, we'll use multisets.

- Given $2 \leq a \leq 10^{10}$, compute $P \subseteq \mathbb{P}$ with $|P|$ minimal and

$$
a=\sum_{p \in P} p .
$$

- Goldbach tells us ${ }^{1}$: every even $n>2$ is the sum of two primes. Hence:

1. If a is prime, return 1
2. If a is even, return 2
3. If a is odd...
${ }^{1}$ at least for all inputs we considered

Tax Avoidance Scheme

Again, we'll use multisets.

- Given $2 \leq a \leq 10^{10}$, compute $P \subseteq \mathbb{P}$ with $|P|$ minimal and $a=\sum_{p \in P} p$.
- Goldbach tells us ${ }^{1}$: every even $n>2$ is the sum of two primes. Hence:

1. If a is prime, return 1
2. If a is even, return 2
3. If a is odd... and a is the sum of two primes, one of the summands must be 2 since a is odd. Hence:
3.1 If $a-2$ is prime, return 2 .
${ }^{1}$ at least for all inputs we considered

Tax Avoidance Scheme

Again, we'll use multisets.

- Given $2 \leq a \leq 10^{10}$, compute $P \subseteq \mathbb{P}$ with $|P|$ minimal and $a=\sum_{p \in P} p$.
- Goldbach tells us ${ }^{1}$: every even $n>2$ is the sum of two primes. Hence:

1. If a is prime, return 1
2. If a is even, return 2
3. If a is odd... and a is the sum of two primes, one of the summands must be 2 since a is odd. Hence:
3.1 If $a-2$ is prime, return 2.
3.2 Otherwise return 3 since $a-3$ is even.
${ }^{1}$ at least for all inputs we considered

Helping Rudolph

- Given a string $s \in\{L, R\}^{n}$, find the length of the longest substring that never moves outside the left boundary.

Helping Rudolph

- Given a string $s \in\{L, R\}^{n}$, find the length of the longest substring that never moves outside the left boundary.
- Idea: consider directions where you return to the original house without visiting any house left of the original house, e.g. RRLRLL. You can prepend or append this string to any valid list of directions. Compress those sequences.

Helping Rudolph

- Given a string $s \in\{L, R\}^{n}$, find the length of the longest substring that never moves outside the left boundary.
- Idea: consider directions where you return to the original house without visiting any house left of the original house, e.g. RRLRLL. You can prepend or append this string to any valid list of directions. Compress those sequences.
- Only valid sequences seperated by $R \mathrm{~s}$ remain. Select and count the longest of those.

Helping Rudolph

compress $\mathrm{s}=$ foldl ' compress1 [] s
compress1 s
' $\mathrm{R}^{\prime}=$ Open:s
compress1 (Comp k:Open:Comp n:s) 'L' $=\operatorname{Comp}(\mathrm{k}+\mathrm{n}+2): \mathrm{s}$
compress1 (Open:Comp n:s) 'L' $=$ Comp $(\mathrm{n}+2)$:s
compress1 (Comp n:Open:s) 'L' $=$ Comp ($\mathrm{n}+2$):s
compress1 (Open:s)
compress1 s
compress1 s
' L ' $=$ Comp 2:s
'L' = Close:s
$-\quad=\mathrm{s}$

They See Me Slidin'

- Given list of stones, starting position, and a flag, can we reach the flag?

They See Me Slidin'

- Given list of stones, starting position, and a flag, can we reach the flag?
- Lists are too slow for lookups - use (Int)Maps and (Int)Sets to store stones for each row and column.

They See Me Slidin'

- Given list of stones, starting position, and a flag, can we reach the flag?
- Lists are too slow for lookups - use (Int)Maps and (Int)Sets to store stones for each row and column.
- Simply model walls as stones

They See Me Slidin'

- Given list of stones, starting position, and a flag, can we reach the flag?
- Lists are too slow for lookups - use (Int)Maps and (Int)Sets to store stones for each row and column.
- Simply model walls as stones
- Get next stone in each of the four directions using said maps.

They See Me Slidin'

- Given list of stones, starting position, and a flag, can we reach the flag?
- Lists are too slow for lookups - use (Int)Maps and (Int)Sets to store stones for each row and column.
- Simply model walls as stones
- Get next stone in each of the four directions using said maps.
- Once we know the destination of the next slide, check if we will cross the flag.

They See Me Slidin'

- Given list of stones, starting position, and a flag, can we reach the flag?
- Lists are too slow for lookups - use (Int)Maps and (Int)Sets to store stones for each row and column.
- Simply model walls as stones
- Get next stone in each of the four directions using said maps.
- Once we know the destination of the next slide, check if we will cross the flag.
- Keep track of already visited positions in another Map to check for loops.

Terrible Poetry

Terrible Poetry

- Given a list of cards, decide if you need to flip the card to check the following rule:

Terrible Poetry

- Given a list of cards, decide if you need to flip the card to check the following rule:

Every card with a golden heart has no even number on its opposite side.

Terrible Poetry

- Given a list of cards, decide if you need to flip the card to check the following rule:

Every card with a golden heart has no even number on its opposite side.

- $A \rightarrow B \Longleftrightarrow \neg A \vee B$; in our case:

Terrible Poetry

- Given a list of cards, decide if you need to flip the card to check the following rule:

Every card with a golden heart has no even number on its opposite side.

- $A \rightarrow B \Longleftrightarrow \neg A \vee B$; in our case:
- $A \equiv$ golden heart

Terrible Poetry

- Given a list of cards, decide if you need to flip the card to check the following rule:

Every card with a golden heart has no even number on its opposite side.

- $A \rightarrow B \Longleftrightarrow \neg A \vee B$; in our case:
- $A \equiv$ golden heart
- $B \equiv$ odd number

Terrible Poetry

- Given a list of cards, decide if you need to flip the card to check the following rule:

Every card with a golden heart has no even number on its opposite side.

- $A \rightarrow B \Longleftrightarrow \neg A \vee B$; in our case:
- $A \equiv$ golden heart
- $B \equiv$ odd number
- If a heart is golden, we need to check the other side.

Terrible Poetry

- Given a list of cards, decide if you need to flip the card to check the following rule:

Every card with a golden heart has no even number on its opposite side.

- $A \rightarrow B \Longleftrightarrow \neg A \vee B$; in our case:
- $A \equiv$ golden heart
- $B \equiv$ odd number
- If a heart is golden, we need to check the other side.
- If a card is even, we need to check the other side.

Networking

- Find a greetings (edges) such that everybody is connected (transitively) at minimum cost. This is a minimum spanning tree problem.

Networking

- Find a greetings (edges) such that everybody is connected (transitively) at minimum cost. This is a minimum spanning tree problem.
- Use Kruskal's algorithm: sort edges by increasing cost. Start with an empty graph. For each edge add it to the graph if it does not lead to a cycle.

Networking

- Find a greetings (edges) such that everybody is connected (transitively) at minimum cost. This is a minimum spanning tree problem.
- Use Kruskal's algorithm: sort edges by increasing cost. Start with an empty graph. For each edge add it to the graph if it does not lead to a cycle.
- Check for cycles using a Union-Find data structure.

Networking

- Find a greetings (edges) such that everybody is connected (transitively) at minimum cost. This is a minimum spanning tree problem.
- Use Kruskal's algorithm: sort edges by increasing cost. Start with an empty graph. For each edge add it to the graph if it does not lead to a cycle.
- Check for cycles using a Union-Find data structure.
- Alternative: use Prim's algorithm.

Let's unfreeze the scoreboard!

Let's unfreeze the scoreboard!

Congratulations everyone!

Thanks for joining - see you on Friday!

[^0]: ${ }^{1}$ at least for all inputs we considered

[^1]: ${ }^{1}$ at least for all inputs we considered

