
Hype, hype, hype, who did win
become 2nd place?

Let’s discuss the problems first ;)

1

Hype, hype, hype, who did win
become 2nd place?

Let’s discuss the problems first ;)

1

Team Building

• Given (n, k), compute n1, n2, n3, n4 such that

1. ni+1 = kni
2. n1 + n2 + n3 + n4 = n

• We have

n = n1 + n2 + n3 + n4

= n1 + kn1 + k2n1 + k3n1

= n1(1 + k + k2 + k3)

• Hence ni = k i−1 n
1+k+k2+k3

2

Team Building

• Given (n, k), compute n1, n2, n3, n4 such that

1. ni+1 = kni

2. n1 + n2 + n3 + n4 = n

• We have

n = n1 + n2 + n3 + n4

= n1 + kn1 + k2n1 + k3n1

= n1(1 + k + k2 + k3)

• Hence ni = k i−1 n
1+k+k2+k3

2

Team Building

• Given (n, k), compute n1, n2, n3, n4 such that

1. ni+1 = kni
2. n1 + n2 + n3 + n4 = n

• We have

n = n1 + n2 + n3 + n4

= n1 + kn1 + k2n1 + k3n1

= n1(1 + k + k2 + k3)

• Hence ni = k i−1 n
1+k+k2+k3

2

Team Building

• Given (n, k), compute n1, n2, n3, n4 such that

1. ni+1 = kni
2. n1 + n2 + n3 + n4 = n

• We have

n = n1 + n2 + n3 + n4

= n1 + kn1 + k2n1 + k3n1

= n1(1 + k + k2 + k3)

• Hence ni = k i−1 n
1+k+k2+k3

2

Team Building

• Given (n, k), compute n1, n2, n3, n4 such that

1. ni+1 = kni
2. n1 + n2 + n3 + n4 = n

• We have

n = n1 + n2 + n3 + n4

= n1 + kn1 + k2n1 + k3n1

= n1(1 + k + k2 + k3)

• Hence ni = k i−1 n
1+k+k2+k3

2

Incubator

We’ll use multisets on this slide.

• Given a list of integers xs, compute

max
n∈N

n · |{x ∈ xs | x ≤ n}|

= max
x∈xs

x · |{x ∈ xs | x ≤ n}|

• Naive solution: O(|xs|2)

• Better: first sort xs to lower to O
(
log(|xs|)|xs|

)
:

startupRevenue l = aux (sort l) (length l)

where

aux [x] 1 = x

aux (x:xs) n = max (x∗n) (aux xs (n−1))

3

Incubator

We’ll use multisets on this slide.

• Given a list of integers xs, compute

max
n∈N

n · |{x ∈ xs | x ≤ n}|

= max
x∈xs

x · |{x ∈ xs | x ≤ n}|

• Naive solution: O(|xs|2)

• Better: first sort xs to lower to O
(
log(|xs|)|xs|

)
:

startupRevenue l = aux (sort l) (length l)

where

aux [x] 1 = x

aux (x:xs) n = max (x∗n) (aux xs (n−1))

3

Incubator

We’ll use multisets on this slide.

• Given a list of integers xs, compute

max
n∈N

n · |{x ∈ xs | x ≤ n}|

= max
x∈xs

x · |{x ∈ xs | x ≤ n}|

• Naive solution: O(|xs|2)

• Better: first sort xs to lower to O
(
log(|xs|)|xs|

)
:

startupRevenue l = aux (sort l) (length l)

where

aux [x] 1 = x

aux (x:xs) n = max (x∗n) (aux xs (n−1))

3

Incubator

We’ll use multisets on this slide.

• Given a list of integers xs, compute

max
n∈N

n · |{x ∈ xs | x ≤ n}|

= max
x∈xs

x · |{x ∈ xs | x ≤ n}|

• Naive solution: O(|xs|2)

• Better: first sort xs to lower to O
(
log(|xs|)|xs|

)
:

startupRevenue l = aux (sort l) (length l)

where

aux [x] 1 = x

aux (x:xs) n = max (x∗n) (aux xs (n−1))

3

Incubator

We’ll use multisets on this slide.

• Given a list of integers xs, compute

max
n∈N

n · |{x ∈ xs | x ≤ n}|

= max
x∈xs

x · |{x ∈ xs | x ≤ n}|

• Naive solution: O(|xs|2)

• Better: first sort xs to lower to O
(
log(|xs|)|xs|

)
:

startupRevenue l = aux (sort l) (length l)

where

aux [x] 1 = x

aux (x:xs) n = max (x∗n) (aux xs (n−1))

3

Tax Avoidance Scheme

Again, we’ll use multisets.

• Given 2 ≤ a ≤ 1010, compute P ⊆ P with |P| minimal and

a =
∑
p∈P

p.

• Goldbach tells us1: every even n > 2 is the sum of two primes.
Hence:

1. If a is prime, return 1

2. If a is even, return 2

3. If a is odd. . . and a is the sum of two primes, one of the

summands must be 2 since a is odd. Hence:

3.1 If a− 2 is prime, return 2.

3.2 Otherwise return 3 since a− 3 is even.

1at least for all inputs we considered

4

Tax Avoidance Scheme

Again, we’ll use multisets.

• Given 2 ≤ a ≤ 1010, compute P ⊆ P with |P| minimal and

a =
∑
p∈P

p.

• Goldbach tells us1: every even n > 2 is the sum of two primes.
Hence:

1. If a is prime, return 1

2. If a is even, return 2

3. If a is odd. . .

and a is the sum of two primes, one of the

summands must be 2 since a is odd. Hence:

3.1 If a− 2 is prime, return 2.

3.2 Otherwise return 3 since a− 3 is even.

1at least for all inputs we considered

4

Tax Avoidance Scheme

Again, we’ll use multisets.

• Given 2 ≤ a ≤ 1010, compute P ⊆ P with |P| minimal and

a =
∑
p∈P

p.

• Goldbach tells us1: every even n > 2 is the sum of two primes.
Hence:

1. If a is prime, return 1

2. If a is even, return 2

3. If a is odd. . .

and a is the sum of two primes, one of the

summands must be 2 since a is odd. Hence:

3.1 If a− 2 is prime, return 2.

3.2 Otherwise return 3 since a− 3 is even.

1at least for all inputs we considered

4

Tax Avoidance Scheme

Again, we’ll use multisets.

• Given 2 ≤ a ≤ 1010, compute P ⊆ P with |P| minimal and

a =
∑
p∈P

p.

• Goldbach tells us1: every even n > 2 is the sum of two primes.
Hence:

1. If a is prime, return 1

2. If a is even, return 2

3. If a is odd. . .

and a is the sum of two primes, one of the

summands must be 2 since a is odd. Hence:

3.1 If a− 2 is prime, return 2.

3.2 Otherwise return 3 since a− 3 is even.

1at least for all inputs we considered

4

Tax Avoidance Scheme

Again, we’ll use multisets.

• Given 2 ≤ a ≤ 1010, compute P ⊆ P with |P| minimal and

a =
∑
p∈P

p.

• Goldbach tells us1: every even n > 2 is the sum of two primes.
Hence:

1. If a is prime, return 1

2. If a is even, return 2

3. If a is odd. . .

and a is the sum of two primes, one of the

summands must be 2 since a is odd. Hence:

3.1 If a− 2 is prime, return 2.

3.2 Otherwise return 3 since a− 3 is even.

1at least for all inputs we considered

4

Tax Avoidance Scheme

Again, we’ll use multisets.

• Given 2 ≤ a ≤ 1010, compute P ⊆ P with |P| minimal and

a =
∑
p∈P

p.

• Goldbach tells us1: every even n > 2 is the sum of two primes.
Hence:

1. If a is prime, return 1

2. If a is even, return 2

3. If a is odd. . .

and a is the sum of two primes, one of the

summands must be 2 since a is odd. Hence:

3.1 If a− 2 is prime, return 2.

3.2 Otherwise return 3 since a− 3 is even.

1at least for all inputs we considered

4

Tax Avoidance Scheme

Again, we’ll use multisets.

• Given 2 ≤ a ≤ 1010, compute P ⊆ P with |P| minimal and

a =
∑
p∈P

p.

• Goldbach tells us1: every even n > 2 is the sum of two primes.
Hence:

1. If a is prime, return 1

2. If a is even, return 2

3. If a is odd. . . and a is the sum of two primes, one of the

summands must be 2 since a is odd. Hence:

3.1 If a− 2 is prime, return 2.

3.2 Otherwise return 3 since a− 3 is even.

1at least for all inputs we considered

4

Tax Avoidance Scheme

Again, we’ll use multisets.

• Given 2 ≤ a ≤ 1010, compute P ⊆ P with |P| minimal and

a =
∑
p∈P

p.

• Goldbach tells us1: every even n > 2 is the sum of two primes.
Hence:

1. If a is prime, return 1

2. If a is even, return 2

3. If a is odd. . . and a is the sum of two primes, one of the

summands must be 2 since a is odd. Hence:

3.1 If a− 2 is prime, return 2.

3.2 Otherwise return 3 since a− 3 is even.

1at least for all inputs we considered

4

Helping Rudolph

• Given a string s ∈ {L,R}n, find the length of the longest

substring that never moves outside the left boundary.

• Idea: consider directions where you return to the original

house without visiting any house left of the original house,

e.g. RRLRLL. You can prepend or append this string to any

valid list of directions. Compress those sequences.

• Only valid sequences seperated by Rs remain. Select and

count the longest of those.

5

Helping Rudolph

• Given a string s ∈ {L,R}n, find the length of the longest

substring that never moves outside the left boundary.

• Idea: consider directions where you return to the original

house without visiting any house left of the original house,

e.g. RRLRLL. You can prepend or append this string to any

valid list of directions. Compress those sequences.

• Only valid sequences seperated by Rs remain. Select and

count the longest of those.

5

Helping Rudolph

• Given a string s ∈ {L,R}n, find the length of the longest

substring that never moves outside the left boundary.

• Idea: consider directions where you return to the original

house without visiting any house left of the original house,

e.g. RRLRLL. You can prepend or append this string to any

valid list of directions. Compress those sequences.

• Only valid sequences seperated by Rs remain. Select and

count the longest of those.

5

Helping Rudolph

compress s = foldl ’ compress1 [] s

compress1 s ’R’ = Open:s

compress1 (Comp k:Open:Comp n:s) ’L’ = Comp (k + n + 2):s

compress1 (Open:Comp n:s) ’L’ = Comp (n + 2):s

compress1 (Comp n:Open:s) ’L’ = Comp (n + 2):s

compress1 (Open:s) ’L’ = Comp 2:s

compress1 s ’L’ = Close:s

compress1 s = s

6

They See Me Slidin’

• Given list of stones, starting position, and a flag, can we reach

the flag?

• Lists are too slow for lookups – use (Int)Maps and (Int)Sets

to store stones for each row and column.

• Simply model walls as stones

• Get next stone in each of the four directions using said maps.

• Once we know the destination of the next slide, check if we

will cross the flag.

• Keep track of already visited positions in another Map to

check for loops.

7

They See Me Slidin’

• Given list of stones, starting position, and a flag, can we reach

the flag?

• Lists are too slow for lookups – use (Int)Maps and (Int)Sets

to store stones for each row and column.

• Simply model walls as stones

• Get next stone in each of the four directions using said maps.

• Once we know the destination of the next slide, check if we

will cross the flag.

• Keep track of already visited positions in another Map to

check for loops.

7

They See Me Slidin’

• Given list of stones, starting position, and a flag, can we reach

the flag?

• Lists are too slow for lookups – use (Int)Maps and (Int)Sets

to store stones for each row and column.

• Simply model walls as stones

• Get next stone in each of the four directions using said maps.

• Once we know the destination of the next slide, check if we

will cross the flag.

• Keep track of already visited positions in another Map to

check for loops.

7

They See Me Slidin’

• Given list of stones, starting position, and a flag, can we reach

the flag?

• Lists are too slow for lookups – use (Int)Maps and (Int)Sets

to store stones for each row and column.

• Simply model walls as stones

• Get next stone in each of the four directions using said maps.

• Once we know the destination of the next slide, check if we

will cross the flag.

• Keep track of already visited positions in another Map to

check for loops.

7

They See Me Slidin’

• Given list of stones, starting position, and a flag, can we reach

the flag?

• Lists are too slow for lookups – use (Int)Maps and (Int)Sets

to store stones for each row and column.

• Simply model walls as stones

• Get next stone in each of the four directions using said maps.

• Once we know the destination of the next slide, check if we

will cross the flag.

• Keep track of already visited positions in another Map to

check for loops.

7

They See Me Slidin’

• Given list of stones, starting position, and a flag, can we reach

the flag?

• Lists are too slow for lookups – use (Int)Maps and (Int)Sets

to store stones for each row and column.

• Simply model walls as stones

• Get next stone in each of the four directions using said maps.

• Once we know the destination of the next slide, check if we

will cross the flag.

• Keep track of already visited positions in another Map to

check for loops.

7

Terrible Poetry

• Given a list of cards, decide if you need to flip the card to

check the following rule:

Every card with a golden heart has no even number on its

opposite side.

• A→ B ⇐⇒ ¬A ∨ B; in our case:

• A ≡ golden heart

• B ≡ odd number

• If a heart is golden, we need to check the other side.

• If a card is even, we need to check the other side.

8

Terrible Poetry

• Given a list of cards, decide if you need to flip the card to

check the following rule:

Every card with a golden heart has no even number on its

opposite side.

• A→ B ⇐⇒ ¬A ∨ B; in our case:

• A ≡ golden heart

• B ≡ odd number

• If a heart is golden, we need to check the other side.

• If a card is even, we need to check the other side.

8

Terrible Poetry

• Given a list of cards, decide if you need to flip the card to

check the following rule:

Every card with a golden heart has no even number on its

opposite side.

• A→ B ⇐⇒ ¬A ∨ B; in our case:

• A ≡ golden heart

• B ≡ odd number

• If a heart is golden, we need to check the other side.

• If a card is even, we need to check the other side.

8

Terrible Poetry

• Given a list of cards, decide if you need to flip the card to

check the following rule:

Every card with a golden heart has no even number on its

opposite side.

• A→ B ⇐⇒ ¬A ∨ B; in our case:

• A ≡ golden heart

• B ≡ odd number

• If a heart is golden, we need to check the other side.

• If a card is even, we need to check the other side.

8

Terrible Poetry

• Given a list of cards, decide if you need to flip the card to

check the following rule:

Every card with a golden heart has no even number on its

opposite side.

• A→ B ⇐⇒ ¬A ∨ B; in our case:

• A ≡ golden heart

• B ≡ odd number

• If a heart is golden, we need to check the other side.

• If a card is even, we need to check the other side.

8

Terrible Poetry

• Given a list of cards, decide if you need to flip the card to

check the following rule:

Every card with a golden heart has no even number on its

opposite side.

• A→ B ⇐⇒ ¬A ∨ B; in our case:

• A ≡ golden heart

• B ≡ odd number

• If a heart is golden, we need to check the other side.

• If a card is even, we need to check the other side.

8

Terrible Poetry

• Given a list of cards, decide if you need to flip the card to

check the following rule:

Every card with a golden heart has no even number on its

opposite side.

• A→ B ⇐⇒ ¬A ∨ B; in our case:

• A ≡ golden heart

• B ≡ odd number

• If a heart is golden, we need to check the other side.

• If a card is even, we need to check the other side.

8

Terrible Poetry

• Given a list of cards, decide if you need to flip the card to

check the following rule:

Every card with a golden heart has no even number on its

opposite side.

• A→ B ⇐⇒ ¬A ∨ B; in our case:

• A ≡ golden heart

• B ≡ odd number

• If a heart is golden, we need to check the other side.

• If a card is even, we need to check the other side.

8

Networking

• Find a greetings (edges) such that everybody is connected

(transitively) at minimum cost. This is a minimum spanning

tree problem.

• Use Kruskal’s algorithm: sort edges by increasing cost. Start

with an empty graph. For each edge add it to the graph if it

does not lead to a cycle.

• Check for cycles using a Union-Find data structure.

• Alternative: use Prim’s algorithm.

9

Networking

• Find a greetings (edges) such that everybody is connected

(transitively) at minimum cost. This is a minimum spanning

tree problem.

• Use Kruskal’s algorithm: sort edges by increasing cost. Start

with an empty graph. For each edge add it to the graph if it

does not lead to a cycle.

• Check for cycles using a Union-Find data structure.

• Alternative: use Prim’s algorithm.

9

Networking

• Find a greetings (edges) such that everybody is connected

(transitively) at minimum cost. This is a minimum spanning

tree problem.

• Use Kruskal’s algorithm: sort edges by increasing cost. Start

with an empty graph. For each edge add it to the graph if it

does not lead to a cycle.

• Check for cycles using a Union-Find data structure.

• Alternative: use Prim’s algorithm.

9

Networking

• Find a greetings (edges) such that everybody is connected

(transitively) at minimum cost. This is a minimum spanning

tree problem.

• Use Kruskal’s algorithm: sort edges by increasing cost. Start

with an empty graph. For each edge add it to the graph if it

does not lead to a cycle.

• Check for cycles using a Union-Find data structure.

• Alternative: use Prim’s algorithm.

9

Let’s unfreeze the scoreboard!

Congratulations everyone!

10

Let’s unfreeze the scoreboard!

Congratulations everyone!

10

Thanks for joining – see you on Friday!

11

