The Correctness of Herr Schmidmeier's Algorithm for the Top Cycle

Florian Hübler, MC Sr

December 9, 2020

Contents

1 Auxiliary facts 1
2 Tournaments 2
2.1 Basic concepts 2
2.2 Chains and cycles 4
2.3 The two iterative algorithms for TC 6
3 Main proof 9

1 Auxiliary facts

lemma ex-max-if-finite: finite $S \Longrightarrow S \neq\{ \} \Longrightarrow \exists m \in S . \neg(\exists x \in S . x>(m:: ' a::$ order $))$
by (induction rule: finite.induct) (auto intro: order.strict-trans)
lemma ex-is-arg-max-if-finite:
fixes $f::{ }^{\prime} a \Rightarrow{ }^{\prime} b::$ order
shows finite $S \Longrightarrow S \neq\{ \} \Longrightarrow \exists x$. is-arg-max $f(\lambda x . x \in S) x$
unfolding is-arg-max-def using ex-max-if-finite $[o f f$ ' S] by auto
definition repeat where repeat $n x s=$ concat (replicate $n x s)$
lemma repeat-eq-Nil-iff [simp]: repeat $n x s=[] \longleftrightarrow n=0 \vee x s=[]$
by (induction n) (auto simp: repeat-def)
lemma $h d$-concat $[$ simp $]: x s s \neq[] \Longrightarrow h d x s s \neq[] \Longrightarrow h d($ concat $x s s)=h d(h d$ xss)
by (cases xss) auto
lemma hd-repeat $[$ simp $]: n>0 \Longrightarrow h d$ (repeat $n x s)=h d x s$ by (cases $n=0 \vee x s=[])$ (auto simp: repeat-def)

```
lemma length-repeat \([\) simp \(]\) : length (repeat \(n x s)=n *\) length \(x s\)
    by (induction \(n\) ) (auto simp: repeat-def)
lemma repeat-0 [simp]: repeat 0 xs \(=[]\)
    by (simp add: repeat-def)
lemma repeat-Nil [simp]: repeat \(n[]=[]\)
    by (simp add: repeat-def)
lemma repeat-Suc [simp]: repeat \((\) Suc \(n)\) xs \(=x s\) @ repeat \(n x s\)
    by (simp add: repeat-def)
```


2 Tournaments

A tournament (i.e. a total and asymmetric relation) with players of type ' a is represented by a function Dom mapping players to their dominion.
Ffor simplicity, we assume that the type of players is finite and that the tournament contains all the players of the type.

```
locale tournament =
    fixes Dom :: 'a :: finite = ' 'a set
    assumes total: }x\not=y\Longrightarrowx\in\operatorname{Dom}y\veey\in\operatorname{Dom}
    assumes asym: x # Dom y \vee y & Dom x
begin
lemma not-in-Dom-iff [simp]: }x\not\in\mathrm{ Dom }y\longleftrightarrowx=y\veey\inDom x
    using total asym by force
```



```
    using asym by auto
lemma irrefl [simp]: x \not\in Dom x
    using asym[of x x] by simp
lemmas Dom-props = total antisym
```


2.1 Basic concepts

definition covers :: ' $a \Rightarrow$ ' $a \Rightarrow$ bool (infixl covers 50)
where x covers $y \longleftrightarrow$ Dom $y \subseteq \operatorname{Dom} x$
definition dominant $::$ ' a set \Rightarrow bool where
dominant $X \longleftrightarrow X \neq\{ \} \wedge(\forall x \in X . \forall y \in-X . y \in \operatorname{Dom} x)$
definition $C O$:: 'a set
where $C O=\{x . i s-\arg -m a x($ card $\circ D o m)(\lambda-. \operatorname{True}) x\}$
definition $U C$:: 'a set

```
    where UC = {x.\neg(\existsy.y\not=x\wedge y covers }x)
definition TC :: 'a set
    where TC =\bigcap{X. dominant X}
lemma CO-nonempty: }CO\not={
    using ex-is-arg-max-if-finite[of UNIV card \circ Dom]
    unfolding CO-def by simp
lemma CO-subset-UC:CO\subseteqUC
proof
    fix x assume }x\inC
    show }x\inU
    proof (rule ccontr)
        assume x }\not=U
        then obtain }y\mathrm{ where }y\not=xy\mathrm{ covers }
        by (auto simp: UC-def)
    hence insert x (Dom x)\subseteq Dom y
```



```
    moreover have x & Dom x
        by auto
    ultimately have Dom x \subset Dom y
        by blast
    hence card (Dom x) < card (Dom y)
        by (intro psubset-card-mono) auto
    with }\langlex\inCO\rangle\mathrm{ show False
        by (auto simp: CO-def is-arg-max-def)
    qed
qed
lemma UC-subset-dominant:
    assumes dominant }
    shows }UC\subseteq
proof
    fix }x\mathrm{ assume }x\inU
    show }x\in
    proof (rule ccontr)
        assume x: x\not\inX
        from x assms have Dom x\subseteq-X
            using assms Dom-props by (auto simp: dominant-def)
        moreover obtain }y\mathrm{ where }y\inX-X\subseteqDom 
            using assms Dom-props unfolding dominant-def by fast
        ultimately have }y\mathrm{ covers }
            by (auto simp: covers-def)
    with }\langlex\inUC\rangle\langlex\not\inX\rangle\langley\inX\rangle\mathrm{ show False
            by (auto simp:UC-def)
    qed
qed
```

```
lemma dominant-UNIV [intro]: dominant UNIV
    by (auto simp: dominant-def)
lemma dominant-INT [intro]:
    assumes }\X.X\inF\Longrightarrow\mathrm{ dominant }
    shows dominant ( }\capF
proof -
    have }CO\subseteqU
        by (rule CO-subset-UC)
    also have UC\subseteq\bigcap}\subseteq
        using UC-subset-dominant assms by auto
    finally have }\bigcapF\not={
        using CO-nonempty by blast
    with assms show ?thesis unfolding dominant-def
        by auto
qed
lemma dominant-Int [intro]:
    assumes dominant }X\mathrm{ and dominant }
    shows dominant ( }X\capY
    using dominant-INT[of {X,Y}] assms by auto
lemma dominant-subset-total:
    assumes dominant }X\mathrm{ and dominant }
    shows }X\subseteqY\veeY\subseteq
proof (rule ccontr)
    assume }\neg(X\subseteqY\veeY\subseteqX
    then obtain x y where xy:x\inX - Y y\inY-X
        by auto
    from }xy\mathrm{ have }y\inDom 
        using <dominant X> by (auto simp: dominant-def)
    moreover from xy have }x\in\operatorname{Dom}
        using <dominant Y> by (auto simp: dominant-def)
    ultimately show False
        by auto
qed
lemma dominant-TC:dominant TC
    unfolding TC-def by auto
lemma UC-subset-TC: UC\subseteqTC
    using dominant-TC UC-subset-dominant by blast
```


2.2 Chains and cycles

A chain is a list of element such that each element (except for the last one) is defeated by its successor.

```
fun chain :: 'a list \(\Rightarrow\) bool where
    chain [] \(\longleftrightarrow\) True
```

```
| chain [x]\longleftrightarrow True
| chain (x#y#xs)\longleftrightarrowx\inDom y ^chain (y#xs)
lemma chain-ConsD: chain (x # xs) \Longrightarrow chain xs
    by (cases xs) auto
```

lemma chain-append-iff:chain $(x s @ z \# y s) \longleftrightarrow$ chain $(x s @[z]) \wedge$ chain $(z \#$
ys)
proof (induction $x s$)
case (Cons x xs)
thus ?case by (cases xs) auto
qed auto

A cycle is a chain where the last element is additionally defeated by the first one.
definition cycle :: 'a list \Rightarrow bool where cycle $x s \longleftrightarrow$ chain $(x s @[h d x s])$
lemma cycle-Nil [simp]: cycle [] by (simp add: cycle-def)
lemma cycle-appendI [intro]: assumes cycle xs and cycle ys assumes $x s=[] \vee y s=[] \vee h d x s=h d y s$ shows cycle (xs @ys)
proof (cases $x s=[] \vee y s=[])$
case False
obtain $y y s^{\prime}$ where $[$ simp $]: y s=y \# y s^{\prime}$ using False by (cases ys) auto
from assms have chain (xs @ hd xs \# (tl ys @ [hd ys])) using False by (subst chain-append-iff) (auto simp: cycle-def)
thus ?thesis
using False assms by (simp add: cycle-def)
qed (use assms in auto)
lemma cycle-repeatI [intro]:
assumes cycle xs
shows cycle (repeat $n x s$)
proof (cases xs $=[] \vee n=0)$
case False
hence $n>0$ xs $\neq[]$
by auto
thus ?thesis using assms
by (induction n rule: nat-induct-non-zero) auto
qed auto

2.3 The two iterative algorithms for TC

The function step performs one iteration of Herr Schmidmeier's algorithm (i.e. it computes the union of all dominators of elements of X).

```
definition step where
    step }X=(\cupx\inX.-Dom x-{x}
```

The function step' performs one iteration of the MC Sr's algorithm, which takes adds all the dominators of elements in X to X.

```
definition step' where
    step'}X=X\cup\mathrm{ step }
```

We show some fairly obvious properties of step and step'.

```
lemma step-subset: dominant \(Y \Longrightarrow X \subseteq Y \Longrightarrow\) step \(X \subseteq Y\)
    by (auto simp: step-def dominant-def)
lemma steps-subset: dominant \(Y \Longrightarrow X \subseteq Y \Longrightarrow(\) step ^^ n) \(X \subseteq Y\)
    by (induction \(n\) ) (simp-all add: step-subset)
lemma step'-subset: dominant \(Y \Longrightarrow X \subseteq Y \Longrightarrow\) step \(^{\prime} X \subseteq Y\)
    unfolding step'-def using step-subset by blast
lemma step'-dominant: dominant \(X \Longrightarrow\) step \({ }^{\prime} X=X\)
    by (auto simp: dominant-def step'-def step-def)
lemma step'-TC [simp]: step \({ }^{\prime} T C=T C\)
    by (rule step \({ }^{\prime}\)-dominant) (rule dominant-TC)
lemma steps-mono: \(X \subseteq Y \Longrightarrow(\) step ^^ \(n) X \subseteq\left(\right.\) step \(\left.{ }^{\wedge} n\right) Y\)
proof (induction \(n\) arbitrary: \(X Y\) )
    case (Suc n)
    have \(\left(\right.\) step \(\left.{ }^{\wedge} n\right)(\) step \(X) \subseteq\left(\right.\) step \(\left.{ }^{\wedge}{ }^{\wedge} n\right)(\) step \(Y)\)
        using Suc.prems by (intro Suc.IH) (auto simp: step-def)
    thus ?case by (simp del: funpow.simps add: funpow-Suc-right)
qed auto
```

In particular, iterating step ${ }^{\prime} n$ times is the same as the union of all results produced by iterating step up to n times.

```
lemma funpow-step'-eq: (step’ ^^n) \(X=(\bigcup k \leq n\). (step ^^ \(k) X)\)
proof (induction \(n\) arbitrary: \(X\) )
    case (Suc n)
    have (step \({ }^{\wedge}{ }^{\wedge}\) Suc n) \(X=\) step \(^{\prime}\left(\left(\right.\right.\) step \(\left.\left.^{\prime}{ }^{\wedge} n\right) X\right)\)
        by \(\operatorname{simp}\)
    also have (step \({ }^{\prime}\) ^^ \(\left.n\right) X=\left(\bigcup k \leq n .\left(\right.\right.\) step \(\left.\left.{ }^{\wedge} k\right) X\right)\)
        by (rule Suc.IH)
    also have step \({ }^{\prime} \ldots=\left(\bigcup k \leq n .\left(\right.\right.\) step \(\left.\left.{ }^{\wedge} k\right) X\right) \cup\) step \(\left(\bigcup k \leq n .\left(\right.\right.\) step \(\left.\left.^{\wedge}{ }^{\wedge} k\right) X\right)\)
        by (simp add: step'-def)
    also have step \(\left(\bigcup k \leq n .\left(\right.\right.\) step \(\left.\left.{ }^{\wedge} k\right) X\right)=\left(\bigcup k \leq n\right.\). \(\left(\right.\) step \({ }^{\wedge}\) Suc \(\left.\left.k\right) X\right)\)
```

```
    by (auto simp: step-def)
    also have \(\ldots=\left(\bigcup k \in S u c `\{. . n\} .\left(\right.\right.\) step \(\left.\left.{ }^{\wedge} k\right) X\right)\)
    by blast
    also have \(\left(\bigcup k \leq n .\left(s t e p{ }^{\wedge}{ }^{\wedge} k\right) X\right) \cup \ldots=\left(\bigcup k \in\{. . n\} \cup S u c `\{. . n\} .\left(\right.\right.\) step \(\left.{ }^{\wedge}{ }^{\wedge} k\right)\)
X)
    by blast
    also have \(\{. . n\} \cup S u c^{`}\{. . n\}=\{. . S u c n\}\)
    by force
    finally show ?case .
qed auto
```

Auxiliary lemma: if we have a chain of length n from some element of X ending in some element y, then y will be in the result after iterating step on $X n$ times.
lemma steps-chain:
assumes chain $(x s @[y])$ and $h d(x s @[y]) \in X$
shows $y \in\left(\right.$ step ${ }^{\wedge}$ length $\left.x s\right) X$
using assms
proof (induction xs arbitrary: X)
case (Cons x xs)
have $x \in \operatorname{Dom}(h d(x s @[y]))$
using Cons.prems by (cases xs) auto
hence $h d(x s @[y]) \in$ step X
using Cons.prems Dom-props by (fastforce simp: step-def)
hence $y \in($ step ^^ length xs) (step X)
using Cons.prems chain-ConsD by (intro Cons.IH) auto
thus ?case
by (subst length-Cons, subst funpow-Suc-right) simp
qed auto
Correctness lemma for the MC Sr's algorithm: eventually, applying step' does not change the result anymore. At that point, we have computed TC.

```
lemma step \({ }^{\prime}\)-stabilises:
    assumes \(X \neq\{ \}\) and \(X \subseteq T C\)
    shows \(\exists N . \forall n \geq N .\left(\right.\) step \(\left.^{\prime}{ }^{\wedge} n\right) X=T C\)
    using assms
proof (induction card \((-X)\) arbitrary: \(X\) rule: less-induct)
    case (less \(X\) )
    show ?case
    proof (cases step' \(X=X\) )
        case True
        hence dominant \(X\) using less.prems
        by (auto simp: step' \({ }^{\prime}\) def step-def dominant-def)
    with \(\langle X \subseteq T C\rangle\) have \(X=T C\)
        by (auto simp: TC-def)
    moreover have (step \({ }^{\text {^^ }} n\) ) \(T C=T C\) for \(n\)
        by (induction n) auto
    ultimately show ?thesis
        by blast
```

```
next
    case False
    hence \(-\left(\right.\) step \(\left.^{\prime} X\right) \subset-X\)
    by (auto simp: step'-def)
    hence card \(\left(-\right.\) step \(\left.^{\prime} X\right)<\operatorname{card}(-X)\)
    by (intro psubset-card-mono) auto
    moreover have step \({ }^{\prime} X \neq\{ \}\)
        using less.prems by (auto simp: step \({ }^{\prime}\)-def)
    moreover have step \({ }^{\prime} X \subseteq T C\)
        using step \({ }^{\prime}\)-subset dominant-TC less.prems by blast
    ultimately obtain \(N\) where \(\forall n \geq N\). (step’ ^^Suc n) \(X=T C\)
        using less(1)[of step' \(X\) ]
        by (auto simp del: funpow.simps simp add: funpow-Suc-right)
    hence \(\forall n \geq\) Suc \(N\). (step \({ }^{\prime \wedge} n\) ) \(X=T C\)
        using Suc-le-D by blast
    thus ?thesis..
qed
qed
```


3 Main proof

Lemma 1: If $C O \neq T C$, then there exists an element $x \in C O$ that lies on a cycle of length 3 and a cycle of length 4.

```
lemma cycle34:
    assumes \(C O \neq T C\)
    shows \(\exists x y w_{1} w_{2} . x \in C O \wedge\) cycle \(\left[x, y, w_{1}\right] \wedge\) cycle \(\left[x, y, w_{1}, w_{2}\right]\)
proof -
    have \(C O \subset T C\)
        using assms CO-subset-UC UC-subset-TC by blast
    have \(\neg\) dominant \(C O\)
        using \(\langle C O \subset T C\rangle\) by (auto simp: TC-def)
    then obtain \(x y\) where \(x \in C O\) and \(y \notin C O\) and \(x \in \operatorname{Dom} y\)
        using CO-nonempty total unfolding dominant-def by (metis Compl-iff)
    hence \(y \in T C-C O\)
        using \(\langle C O \subset T C\rangle\) dominant-TC
        unfolding dominant-def by auto
```

We now show that there are at least two different elements $w_{1}, w_{2} \in D o m$ $x-\operatorname{Dom} y$ and w.l.o.g. $w_{1} \in \operatorname{Dom} w_{2}$:

```
obtain \(w_{1} w_{2}\) where
    \(w_{1} \in \operatorname{Dom} x-\operatorname{Dom} y\) and \(w_{2} \in \operatorname{Dom} x-\operatorname{Dom} y\) and
    \(w_{1} \neq w_{2}\) and \(w_{1} \in \operatorname{Dom} w_{2}\)
proof -
    have card \((\operatorname{Dom} y-\{x\})+1=\operatorname{card}(\) Dom \(y)\)
        using \(\langle x \in\) Dom \(y\rangle\) by (metis Suc-eq-plus1 card-Suc-Diff1 finite-code)
    also from \(\langle y \in T C-C O\rangle\) have card (Dom y) < card (Dom x)
        using \(\langle x \in C O\rangle\) less-linear by (fastforce simp: CO-def is-arg-max-def)
    finally have \(2 \leq \operatorname{card}(\operatorname{Dom} x)-\operatorname{card}(\operatorname{Dom} y-\{x\})\)
        by auto
    also have \(\ldots \leq \operatorname{card}(\operatorname{Dom} x-(\operatorname{Dom} y-\{x\}))\)
        using diff-card-le-card-Diff by (intro diff-card-le-card-Diff) auto
    also have \(\operatorname{Dom} x-(\operatorname{Dom} y-\{x\})=\operatorname{Dom} x-\operatorname{Dom} y\)
        using Dom-props by auto
    finally have card (Dom \(x-\operatorname{Dom} y) \geq 2\)
        by auto
        thus ?thesis
            using total that
            by (auto simp: card-le-Suc-iff numeral-2-eq-2)
                (metis Diff-iff insertCI)
qed
```

With that, we have our two cycles:

```
    hence cycle [x,y, w
        using 〈x\in Dom y> by (auto simp: cycle-def)
    thus ?thesis
        using }\langlex\inCO\rangle\mathrm{ by (auto simp: cycle-def)
qed
```

Lemma 2：If $C O \neq T C$ ，there exists a Copeland winner x that is in every iteration of step on the initial set $\{x\}$ past the 6 th one．（this is part of Corollary 1 by Herr Hübler）

```
lemma stable-element-exists:
    assumes \(C O \neq T C\)
    shows \(\exists x \in C O . \forall n \geq 6 . x \in\left(\right.\) step \(\left.{ }^{\wedge} n\right)\{x\}\)
proof -
    from assms obtain \(x\) y \(w_{1} w_{2}\)
        where \(x \in C O\) and cycle \(\left[x, y, w_{1}\right]\) and cycle \(\left[x, y, w_{1}, w_{2}\right]\)
        using cycle34 by auto
    have \(\forall n \geq 6 . x \in\left(\right.\) step \(\left.{ }^{\wedge} n\right)\{x\}\)
    proof safe
    fix \(n\) :: nat
    assume \(n \geq 6\)
    have \(\exists k l . n=3 * k+4 * l\)
        using \(\langle n \geq 6\rangle\) by presburger
    then obtain \(k l\) where \(k l: n=3 * k+4 * l\)
        by auto
    define \(x s\) where \(x s=\) repeat \(k\left[x, y, w_{1}\right] @\) repeat \(l\left[x, y, w_{1}, w_{2}\right]\)
    have length-xs: length \(x s=n\)
        by (auto simp: xs-def \(k l\) )
    have \([\) simp]: \(x s \neq[]\)
        using \(\langle n \geq 6\) 〉 length-xs by auto
    hence \([\) simp]: \(h d x s=x\)
        by (cases \(k=0\); cases \(l=0\) ) (auto simp: xs-def hd-append)
    have cycle xs
        using 〈cycle \(\left[x, y, w_{1}\right]\) and 〈cycle \(\left.\left[x, y, w_{1}, w_{2}\right]\right\rangle\)
        by (cases \(k=0\); cases \(l=0\) ) (auto simp: xs-def)
    hence \(x \in\left(\right.\) step \({ }^{\wedge}\) length \(\left.x s\right)\{x\}\)
            by (intro steps-chain) (use \(\langle x \in C O\rangle\) in \(\langle\) auto simp: cycle-def〉)
    thus \(x \in\left(\right.\) step \(\left.{ }^{\wedge} n\right)\{x\}\)
            by (simp add: length-xs)
    qed
    thus ?thesis
        using \(\langle x \in C O\rangle\) by blast
qed
```

Corollary 1: If $C O \neq T C$, Herr Schmidmeier's algorithm returns TC in finitely many steps.

```
corollary steps-converges-to-TC:
    assumes }CO\not=TC\mathrm{ and }CO\subseteqX\mathrm{ and X }\subseteqT
    shows }\existsN.\foralln\geqN.(step ^^n) X = TC
proof -
    from «CO \not=TC> obtain x where x: x \inCO \foralln\geq6.x\in (step ^^n n) {x}
        using stable-element-exists by blast
```

 have \(\exists N . \forall n \geq N .\left(\right.\) step \(\left.^{\prime}{ }^{\wedge} n\right)\{x\}=T C\)
 using \(x\) CO-subset-UC UC-subset-TC
 by (intro step'-stabilises) auto
 then obtain \(N\) where \(N: \forall n \geq N .\left(\right.\) step \(\left.^{\prime}{ }^{\wedge} n\right)\{x\}=T C .\).
 have \(\left(\right.\) step \(\left.{ }^{\wedge} n\right) X=T C\) if \(n: n \geq N+6\) for \(n\)
 proof
 have \(T C=\left(\right.\) step \(\left.^{\prime}{ }^{\wedge}(n-6)\right)\{x\}\)
 using \(N n\) by auto
 also have \(\ldots \subseteq\left(\right.\) step \(\left.{ }^{\wedge} n\right)\{x\}\)
 proof
 fix \(y\) assume \(y \in\left(\right.\) step \(\left.^{\prime}{ }^{\wedge}(n-6)\right)\{x\}\)
 then obtain \(k\) where \(k: k \leq n-6 y \in\left(\operatorname{step}^{\wedge}{ }^{\wedge} k\right)\{x\}\)
 by (auto simp: funpow-step'-eq)
 have \(y \in\left(\right.\) step \(\left.^{\wedge} \wedge k\right)\{x\}\)
 by fact
 also have \(\left(\right.\) step \(\left.{ }^{\wedge} k\right)\{x\} \subseteq\left(\right.\) step \(\left.{ }^{\wedge} k\right)\left(\left(\right.\right.\) step \(\left.\left.{ }^{\wedge}{ }^{\wedge}(n-6-k+6)\right)\{x\}\right)\)
 using \(x\) by (intro steps-mono) auto
 also have \(\ldots=\left(\right.\) step \(\left.^{\wedge}{ }^{\wedge}(k+(n-6-k+6))\right)\{x\}\)
 by (subst funpow-add) auto
 also have \(k+(n-6-k+6)=n\)
 using \(k n\) by auto
 finally show \(y \in\left(\right.\) step \(\left.^{\wedge} n\right)\{x\}\).
 qed
 also have \(\ldots \subseteq\left(\right.\) step \(\left.{ }^{\wedge} n\right) X\)
 using \(x\) assms by (intro steps-mono) auto
 finally show \(T C \subseteq \ldots\).
 next
 show (step ^^n) \(X \subseteq T C\)
 using \(x\) CO-subset-UC UC-subset-TC assms
 by (intro steps-subset dominant-TC) auto
 qed
 thus ?thesis by blast
 qed
end

