Proof of Herr Schmidmeiers' Solution

Florian Hübler

December 2020

Lemma 1. Let $G=(V, E)$ be a fully connected directed graph, let $C O$ and $T C$ be defined as in H2.2. (with changed edge directions) and suppose $T C \neq C O$. Then there exists at least one cycle of length 3 and at least one cycle of length 4 in TC.

Proof. As proved in my solution, $C O \subsetneq T C$ holds in this case.
Further

$$
\exists u \in C O: \exists v \in N_{\text {out }}(u) \backslash C O
$$

as otherwise $T C=C O$ would hold. Let $k:=\operatorname{deg}_{\text {out }}(u)$.
We know by definition of $C O$ that $\operatorname{deg}_{\text {out }}(v) \geq k+1$ and due to $v \notin N_{\text {out }}(u)$ we get

$$
\left|N_{\text {out }}(v) \backslash N_{\text {out }}(u)\right| \geq 2
$$

Now let $w, w^{\prime} \in N_{\text {out }}(v) \backslash N_{\text {out }}(u), w \neq w^{\prime}$. W.l.o.g. assume $\left(w, w^{\prime}\right) \in E$. In this case

$$
\begin{aligned}
& C_{3}:=(u, v, w) \\
& C_{4}:=\left(u, v, w, w^{\prime}\right)
\end{aligned}
$$

are cycles of length 3 and 4 respectively, as the graph is fully connected (i.e. $\left.w \notin N_{\text {out }}(u) \Leftrightarrow u \in N_{\text {out }}(w)\right)$.

Lemma 2. Following holds:

$$
\forall n \geq 6 \exists k, l \in \mathbb{N}: n=3 k+4 l
$$

Proof. Let $n=3 m+r$ where $r \in\{0,1,2\}$. (This is a basic property of natural numbers). Due to $n \geq 6$ we get $m \geq 2$.
Setting $k=(m-r), l=r$ does the job:

$$
n=3 m+r=3(m-r)+3 \cdot r+r=3 \cdot(m-r)+4 \cdot r
$$

Corollary 1. The solution proposed by Herr Schmidmeier does terminate.
Proof. We define G by changing the direction of all edges in the tournament graph which can be found in Figure 1 on the exercise sheet. Hence, if we use the notation from the Wettbewerb Website, $\bar{D}(v)=N_{\text {out }}(v)$. Let $n:=|T C|$.
Let $u \in V$ be the vertex defined in the proof of Lemma 1. As proven in my solution, the algorithm does also terminate if started from only u, hence there must be a path (of maximum length $n-1$) from u to every vertex in $T C$. Also, if starting from u, by Lemma 1. and $2 ., u$ will be in every iteration after the $6^{\text {th }}$. Hence, after a maximum of $n+5$ iterations, Herr Schmidmeier will find the correct $T C$.

