
Informatik 2:
Functional Programming

Tobias Nipkow

Fakultät für Informatik
TU München

http://fp.in.tum.de

Wintersemester 2012/13

January 29, 2013

1

http://fp.in.tum.de

Sprungtabelle

16. Oktober 23. Oktober 30. Oktober

6. November 13. November 20. November 27. November

4. Dezember 11. Dezember 18. Dezember

8. Januar 15. Januar 22. Januar 29. Januar

2

1 Organisatorisches

2 Functional Programming: The Idea

3 Basic Haskell

4 Lists

5 Proofs

6 Higher-Order Functions

7 Type Classes

8 Algebraic data Types

9 Modules and Abstract Data Types

10 Case Study: Huffman Coding

11 Case Study: Parsing

12 Lazy evaluation

13 I/O and Monads

14 Complexity and Optimization

3

1. Organisatorisches

4

Siehe http://fp.in.tum.de

5

http://fp.in.tum.de

Wochenplan

Dienstag Vorlesung: Gehirn mitbringen
Harter Abgabetermin für Übungsblatt
Neues Übungsblatt

Mi–Fr Übungen: Gehirn und Laptop mitbringen

6

Literatur

• Vorlesung orientiert sich stark an
Thompson: Haskell, the Craft of Functional Programming

• Für Freunde der kompakten Darstellung:
Hutton: Programming in Haskell

• Für Naturtalente: Es gibt sehr viel Literatur online.
Qualität wechselhaft, nicht mit Vorlesung abgestimmt.

7

Klausur und Hausaufgaben

• Klausur am Ende der Vorlesung

• Wer mindestens 40% der Hausaufgabenpunkte erreicht und
die Klausur besteht, bekommt einen Notenbonus von 0.3
(bei bestandener Klausur).

• Wer Hausaufgaben abschreibt oder abschreiben lässt,
hat seinen Notenbonus sofort verwirkt.

8

2. Functional Programming: The Idea

9

Functions are pure/mathematical functions:
Always same output for same input

Computation = Application of functions to arguments

10

Example 1

In Haskell:

sum [1..10]

In Java:

total = 0;

for (i = 1; i <= 10; ++i)

total = total + i;

11

Example 2

In Haskell:

wellknown [] = []

wellknown (x:xs) = wellknown ys ++ [x] ++ wellknown zs

where ys = [y | y <- xs, y <= x]

zs = [z | z <- xs, x < z]

12

In Java:

void sort(int[] values) {

if (values ==null || values.length==0){ return; }

this.numbers = values;

number = values.length;

quicksort(0, number - 1);

}

void quicksort(int low, int high) {

int i = low, j = high;

int pivot = numbers[low + (high-low)/2];

while (i <= j) {

while (numbers[i] < pivot) { i++; }

while (numbers[j] > pivot) { j--; }

if (i <= j) {exchange(i, j); i++; j--; }

}

if (low < j) quicksort(low, j);

if (i < high) quicksort(i, high);

}

void exchange(int i, int j) {

int temp = numbers[i];

numbers[i] = numbers[j];

numbers[j] = temp;

}

13

There are two ways of constructing a software design:

One way is to make it so simple that there are
obviously no deficiencies.

The other way is to make it so complicated that there are
no obvious deficiencies.

From the Turing Award lecture by Tony Hoare (1985)

14

Characteristics of functional programs

elegant

expressive

concise

readable

predictable pure functions, no side effects

provable it’s just (very basic) mathematics!

15

Aims of functional programming

• Program at a high level of abstraction:
not bits, bytes and pointers but whole data structures

• Minimize time to read and write programs:
⇒ reduced development and maintenance time and costs

• Increased confidence in correctness of programs:
clean and simple syntax and semantics
⇒ programs are easier to

• understand
• test (Quickcheck!)
• prove correct

16

Historic Milestones

1930s

Alonzo Church develops the lambda calculus,
the core of all functional programming languages.

17

Historic Milestones

1950s

John McCarthy (Turing Award 1971) develops Lisp,
the first functional programming language.

18

Historic Milestones

1970s

Robin Milner (FRS, Turing Award 1991) & Co. develop ML,
the first modern functional programming language with
polymorphic types and type inference.

19

Historic Milestones

1987

An international committee of researchers initiates the
development of Haskell, a standard lazy functional language.

20

Popular languages based on FP

F# (Microsoft) = ML for the masses

Erlang (Ericsson) = distributed functional programming

Scala (EPFL) = Java + FP

21

FP concepts in other languages

Garbage collection: Java, C#, Python, Perl, Ruby, Javascript

Higher-order functions: Java, C#, Python, Perl, Ruby, Javascript

Generics: Java, C#

List comprehensions: C#, Python, Perl 6, Javascript

Type classes: C++ “concepts”

22

Why we teach FP

• FP is a fundamental programming style (like OO!)

• FP is everywhere: Javascript, Scala, Erlang, F# . . .

• It gives you the edge over Millions of Java/C/C++
programmers out there

• FP concepts make you a better programmer,
no matter which language you use

• To show you that programming need not be a black art
with magic incantations like public static void

but can be a science

23

3. Basic Haskell

Notational conventions
Type Bool

Type Integer

Guarded equations
Recursion
Syntax matters
Types Char and String

Tuple types
Do’s and Don’ts

24

3.1 Notational conventions

e::T means that expression e has type T

Function types: Mathematics Haskell
f :: A× B → C f :: A -> B -> C

Function application: Mathematics Haskell
f (a) f a

f (a, b) f a b

f (g(b)) f (g b)

f (a, g(b)) f a (g b)

Prefix binds stronger than infix:

f a + b means (f a) + b

not f (a + b)

25

3.2 Type Bool

Predefined: True False not && || ==

Defining new functions:

xor :: Bool -> Bool -> Bool

xor x y = (x || y) && not(x && y)

xor2 :: Bool -> Bool -> Bool

xor2 True True = False

xor2 True False = True

xor2 False True = True

xor2 False False = False

This is an example of pattern matching.
The equations are tried in order. More later.

Is xor x y == xor2 x y true?

26

Testing with QuickQueck
Import test framework:

import Test.QuickCheck

Define property to be tested:

prop_xor2 x y =

xor x y == xor2 x y

Note naming convention prop_...

Check property with GHCi:

> quickCheck prop_xor2

GHCi answers

+++ OK, passed 100 tests.

27

BoolDemo.hs

For GHCi commands (:l etc) see home page

28

3.3 Type Integer

Unlimited precision mathematical integers!
Predefined: + - * ^ div mod abs == /= < <= > >=

There is also the type Int of 32-bit integers.
Warning: Integer: 2 ^ 32 = 4294967296

Int: 2 ^ 32 = 0

==, <= etc are overloaded and work on many types!

29

Example:

sq :: Integer -> Integer

sq n = n * n

Evaluation:

sq (sq 3) = sq 3 * sq 3

= (3 * 3) * (3 * 3)

= 81

Evaluation of Haskell expressions
means

Using the defining equations from left to right.

30

3.4 Guarded equations

Example: maximum of 2 integers.

max :: Integer -> Integer -> Integer

max x y

| x >= y = x

| otherwise = y

Haskell also has if-then-else:

max x y = if x >= y then x else y

True?

prop_max_assoc x y z =

max x (max y z) == max (max x y) z

31

3.5 Recursion

Example: xn (using only *, not ^)

-- pow x n returns x to the power of n

pow :: Integer -> Integer -> Integer

pow x n = ???

Cannot write x ∗ · · · ∗ x︸ ︷︷ ︸
n times

Two cases:

pow x n

| n == 0 = 1 -- the base case

| n > 0 = x * pow x (n-1) -- the recursive case

More compactly:

pow x 0 = 1

pow x n | n > 0 = x * pow x (n-1)

32

Evaluating pow

pow x 0 = 1

pow x n | n > 0 = x * pow x (n-1)

pow 2 3 = 2 * pow 2 2

= 2 * (2 * pow 2 1)

= 2 * (2 * (2 * pow 2 0))

= 2 * (2 * (2 * 1))

= 8

> pow 2 (-1)

GHCi answers

*** Exception: PowDemo.hs:(1,1)-(2,33):

Non-exhaustive patterns in function pow

33

Partially defined functions

pow x n | n > 0 = x * pow x (n-1)

versus

pow x n = x * pow x (n-1)

• call outside intended domain raises exception

• call outside intended domain leads to arbitrary behaviour,
including nontermination

In either case:

State your preconditions clearly!

As a guard, a comment or using QuickCheck:

P x ==> isDefined(f x)

where isDefined y = y == y.
34

Example sumTo

The sum from 0 to n = n + (n-1) + (n-2) + ... + 0

sumTo :: Integer -> Integer

sumTo 0 = 0

sumTo n | n > 0 =

n + sumTo (n-1)

prop_sumTo n =

n >= 0 ==> sumTo n == n*(n+1) ‘div‘ 2

Properties can be conditional

35

Typical recursion patterns for integers

f :: Integer -> ...

f 0 = e -- base case

f n | n > 0 = ... f(n - 1) ... -- recursive call(s)

Always make the base case as simple as possible,
typically 0, not 1

Many variations:

• more parameters

• other base cases, e.g. f 1

• other recursive calls, e.g. f(n - 2)

• also for negative numbers

36

Recursion in general

• Reduce a problem to a smaller problem,
e.g. pow x n to pow x (n-1)

• Must eventually reach a base case

• Build up solutions from smaller solutions

General problem solving strategy
in any programing language

37

3.6 Syntax matters

Functions are defined by one or more equations.
In the simplest case, each function is defined
by one (possibly conditional) equation:

f x1 . . . xn
| test1 = e1
...

| testn = en

Each right-hand side ei is an expression.
Note: otherwise = True

Function and parameter names must begin with a lower-case letter
(Type names begin with an upper-case letter)

38

An expression can be

• a literal like 0 or "xyz",

• or an identifier like True or x,

• or a function application f e1 . . . en
where f is a function and e1 . . . en are expressions,

• or a parenthesized expression (e)

Additional syntactic sugar:

• if then else

• infix

• where

• . . .

39

Local definitions: where

A defining equation can be followed by one or more local definitions.

pow4 x = x2 * x2 where x2 = x * x

pow4 x = sq (sq x) where sq x = x * x

pow8 x = sq (sq x2)

where x2 = x * x

sq x = x * x

myAbs x

| x > 0 = y

| otherwise = -y

where y = x

40

Local definitions: let

let x = e1 in e2

defines x locally in e2

Example:

let x = 2+3 in x^2 + 2*x

= 35

Like e2 where x = e1
But can occur anywhere in an expression
where: only after function definitions

41

Layout: the offside rule

a = 10 a = 10 a = 10

b = 20 b = 20 b = 20

c = 30 c = 30 c = 30

In a sequence of definitions,
each definition must begin in the same column.

a = 10 + a = 10 + a = 10 +

20 20 20

A definition ends with the first piece of text
in or to the left of the start column.

42

Prefix and infix

Function application: f a b

Functions can be turned into infix operators
by enclosing them in back quotes.

Example

5 ‘mod‘ 3 = mod 5 3

Infix operators: a + b

Infix operators can be turned into functions
by enclosing them in parentheses.

Example

(+) 1 2 = 1 + 2

43

Comments

Until the end of the line: --

id x = x -- the identity function

A comment block: {- ... -}

{- Comments

are

important

-}

44

3.7 Types Char and String

Character literals as usual: ’a’, ’$’, ’\n’, . . .
Lots of predefined functions in module Data.Char

String literals as usual: "I am a string"

Strings are lists of characters.
Lists can be concatenated with ++:
"I am" ++ "a string" = "I ama string"

More on lists later.

45

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-Char.html

3.8 Tuple types

(True, ’a’, "abc") :: (Bool, Char, String)

In general:

If e1 :: T1 . . . en :: Tn

then (e1,...,en) :: (T1,...,Tn)

In mathematics: T1 × . . .× Tn

46

3.9 Do’s and Don’ts

47

True and False

Never write

b == True

Simply write

b

Never write

b == False

Simply write

not(b)

48

isBig :: Integer -> Bool

isBig n

| n > 9999 = True

| otherwise = False

isBig n = n > 9999

if b then True else False b

if b then False else True not b

if b then True else b’ b || b’

...

49

Tuple

Try to avoid (mostly):

f (x,y) = ...

Usually better:

f x y = ...

Just fine:

f x y = (x + y, x - y)

50

4. Lists

List comprehension
Generic functions: Polymorphism
Case study: Pictures
Pattern matching
Recursion over lists

51

Lists are the most important data type

in functional programming

52

[1, 2, 3, -42] :: [Integer]

[False] :: [Bool]

[’C’, ’h’, ’a’, ’r’] :: [Char]

=
"Char" :: String

because
type String = [Char]

[not, not] ::

[Bool -> Bool]

[] :: [T] -- empty list for any type T

[[True],[]] ::

[[Bool]]

53

Typing rule

If e1 :: T . . . en :: T
then [e1,...,en] :: [T]

Graphical notation:

e1 :: T . . . en :: T

[e1,...,en] :: [T]

[True, ’c’] is not type-correct!!!

All elements in a list must have the same type

54

Test

(True, ’c’) ::

(Bool, Char)

[(True, ’c’), (False, ’d’)] ::

[(Bool, Char)]

([True, False], [’c’, ’d’]) ::

([Bool], [Char])

55

List ranges

[1 .. 3] = [1, 2, 3]

[3 .. 1] = []

[’a’ .. ’c’] = [’a’, ’b’, ’c’]

56

Concatenation: ++

Concatenates two lists of the same type:

[1, 2] ++ [3] = [1, 2, 3]

[1, 2] ++ [’a’]

57

4.1 List comprehension

Set comprehensions:

{x2 | x ∈ {1, 2, 3, 4, 5}}

The set of all x2 such that x is an element of {1, 2, 3, 4, 5}

List comprehension:

[x ^ 2 | x <- [1 .. 5]]

The list of all x^2 such that x is an element of [1 .. 5]

58

List comprehension — Generators

[x ^ 2 | x <- [1 .. 5]]

= [1, 4, 9, 16, 25]

[toLower c | c <- "Hello, World!"]

= "hello, world!"

[(x, even x) | x <- [1 .. 3]]

= [(1, False), (2, True), (3, False)]

[x+y | (x,y) <- [(1,2), (3,4), (5,6)]]

= [3, 7, 11]

pattern <- list expression
is called a generator

Precise definition of pattern later.
59

List comprehension — Tests

[x*x | x <- [1 .. 5], odd x]

= [1, 9, 25]

[x*x | x <- [1 .. 5], odd x, x > 3]

= [25]

[toLower c | c <- "Hello, World!", isAlpha c]

= "helloworld"

Boolean expressions are called tests

60

Defining functions by list comprehension

Example

factors :: Int -> [Int]

factors n = [m | m <- [1 .. n], n ‘mod‘ m == 0]

=⇒ factors 15 = [1, 3, 5, 15]

prime :: Int -> Bool

prime n = factors n == [1,n]

=⇒ prime 15 = False

primes :: Int -> [Int]

primes n = [p | p <- [1 .. n], prime p]

=⇒ primes 100 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
61

List comprehension — General form

[expr | E1, ..., En]

where expr is an expression and each Ei is a generator or a test

62

Multiple generators

[(i,j) | i <- [1 .. 2], j <- [7 .. 9]]

= [(1,j) | j <- [7..9]] ++

[(2,j) | j <- [7..9]]

= [(1,7), (1,8), (1,9), (2,7), (2,8), (2,9)]

Analogy: each generator is a for loop:

for all i <- [1 .. 2]

for all j <- [7 .. 9]

...

Key difference:

Loops do something
Expressions produce something

63

Dependent generators

[(i,j) | i <- [1 .. 3], j <- [i .. 3]]

= [(1,j) | j <- [1..3]] ++

[(2,j) | j <- [2..3]] ++

[(3,j) | j <- [3..3]]

= [(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)]

64

The meaning of list comprehensions

[e | x <- [a1,...,an]]
= (let x = a1 in [e]) ++ · · · ++ (let x = an in [e])

[e | b]
= if b then [e] else []

[e | x <- [a1,...,an], E]

= (let x = a1 in [e | E]) ++ · · · ++

(let x = an in [e | E])

[e | b, E]

= if b then [e | E] else []

65

Example: concat

concat xss = [x | xs <- xss, x <- xs]

concat [[1,2], [4,5,6]]

= [x | xs <- [[1,2], [4,5,6]], x <- xs]

= [x | x <- [1,2]] ++ [x | x <- [4,5,6]]

= [1,2] ++ [4,5,6]

= [1,2,4,5,6]

What is the type of concat?

[[a]] -> [a]

66

4.2 Generic functions: Polymorphism

Polymorphism = one function can have many types

Example

length :: [Bool] -> Int

length :: [Char] -> Int

length :: [[Int]] -> Int
...

The most general type:

length :: [a] -> Int

where a is a type variable

=⇒ length :: [T] -> Int for all types T

67

Type variable syntax

Type variables must start with a lower-case letter
Typically: a, b, c, . . .

68

Two kinds of polymorphism

Subtype polymorphism as in Java:

f :: T → U T ′ ≤ T

f :: T ′ → U

(remember: horizontal line = implication)

Parametric polymorphism as in Haskell:
Types may contain type variables (“parameters”)

f :: T

f :: T [U/a]

where T [U/a] = “T with a replaced by U”
Example: (a→ a)[Bool/a] = Bool → Bool

(Often called ML-style polymorphism)

69

Defining polymorphic functions

id :: a -> a

id x = x

fst :: (a,b) -> a

fst (x,y) = x

swap :: (a,b) -> (b,a)

swap (x,y) = (y,x)

silly :: Bool -> a -> Char

silly x y = if x then ’c’ else ’d’

silly2 :: Bool -> Bool -> Bool

silly2 x y = if x then x else y

70

Polymorphic list functions from the Prelude

length :: [a] -> Int

length [5, 1, 9] = 3

(++) :: [a] -> [a] -> [a]

[1, 2] ++ [3, 4] = [1, 2, 3, 4]

reverse :: [a] -> [a]

reverse [1, 2, 3] = [3, 2, 1]

replicate :: Int -> a -> [a]

replicate 3 ’c’ = "ccc"

71

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html

Polymorphic list functions from the Prelude

head, last :: [a] -> a

head "list" = ’l’, last "list" = ’t’

tail, init :: [a] -> [a]

tail "list" = "ist", init "list" = "lis"

take, drop :: Int -> [a] -> [a]

take 3 "list" = "lis", drop 3 "list" = "t"

-- A property:

prop_take_drop xs =

take n xs ++ drop n xs == xs

72

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html

Polymorphic list functions from the Prelude

concat :: [[a]] -> [a]

concat [[1, 2], [3, 4], [0]] = [1, 2, 3, 4, 0]

zip :: [a] -> [b] -> [(a,b)]

zip [1,2] "ab" = [(1, ’a’), (2, ’b’)]

unzip :: [(a,b)] -> ([a],[b])

unzip [(1, ’a’), (2, ’b’)] = ([1,2], "ab")

-- A property

prop_zip xs ys = length xs == length ys ==>

unzip(zip xs ys) == (xs, ys)

73

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html

Haskell libraries

• Prelude and much more

• Hoogle — searching the Haskell libraries

• Hackage — a collection of Haskell packages

See Haskell pages and Thompson’s book for more information.

74

http://www.haskell.org/ghc/docs/latest/html/libraries/index.html
http://www.haskell.org/hoogle/
http://hackage.haskell.org/packages/hackage.html

Further list functions from the Prelude

and :: [Bool] -> Bool

and [True, False, True] = False

or :: [Bool] -> Bool

or [True, False, True] = True

-- For numeric types a:

sum, product :: [a] -> a

sum [1, 2, 2] = 5, product [1, 2, 2] = 4

What exactly is the type of sum, prod, +, *, ==, . . . ???

75

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html

Polymorphism versus Overloading

Polymorphism: one definition, many types

Overloading: different definition for different types

Example

Function (+) is overloaded:

• on type Int: built into the hardware

• on type Integer: realized in software

So what is the type of (+) ?

76

Numeric types

(+) :: Num a => a -> a -> a

Function (+) has type a -> a -> a for any type of class Num

• Class Num is the class of numeric types.

• Predefined numeric types: Int, Integer, Float

• Types of class Num offer the basic arithmetic operations:
(+) :: Num a => a -> a -> a

(-) :: Num a => a -> a -> a

(*) :: Num a => a -> a -> a
...
sum, product :: Num a => [a] -> a

77

Other important type classes

• The class Eq of equality types, i.e. types that posess
(==) :: Eq a => a -> a -> Bool

(/=) :: Eq a => a -> a -> Bool

Most types are of class Eq. Exception:

• The class Ord of ordered types, i.e. types that posess
(<) :: Ord a => a -> a -> Bool

(<=) :: Ord a => a -> a -> Bool

More on type classes later. Don’t confuse with OO classes.

78

Warning: == []

null : [a] -> Bool

null xs = xs == []

Why?

== on [a] must (potentially) call == on a

Better:

null :: [a] -> Bool

null [] = True

null _ = False

In Prelude!

79

Warning: QuickCheck and polymorphism

QuickCheck does not work well on polymorphic properties

Example

QuickCheck does not find a counterexample to

prop reverse :: [a] -> Bool

prop reverse xs = reverse xs == xs

The solution: specialize the polymorphic property, e.g.

prop reverse :: [Int] -> Bool

prop reverse xs = reverse xs == xs

Now QuickCheck works

80

Conditional properties have result type Property

Example

prop rev10 :: [Int] -> Property

prop rev10 xs =

length xs <= 10 ==> reverse(reverse xs) == xs

81

4.3 Case study: Pictures

type Picture = [String]

uarr :: Picture larr :: Picture

uarr = larr =

[" # ", [" # ",

" ### ", " ## ",

"#####", "#####",

" # ", " ## ",

" # ", " # ",

82

flipH :: Picture -> Picture

flipH = reverse

flipV :: Picture -> Picture

flipV pic = [reverse line | line <- pic]

rarr :: Picture

rarr = flipV larr

darr :: Picture

darr = flipH uarr

above :: Picture -> Picture -> Picture

above = (++)

beside :: Picture -> Picture -> Picture

beside pic1 pic2 = [l1 ++ l2 | (l1,l2) <- zip pic1 pic2]

83

PictureDemo.hs

84

Chessboards

bSq = replicate 5 (replicate 5 ’#’)

wSq = replicate 5 (replicate 5 ’ ’)

alterH :: Picture -> Picture -> Int -> Picture

alterH pic1 pic2 1 = pic1

alterH pic1 pic2 n = pic1 ‘beside‘ alterH pic2 pic1 (n-1)

alterV :: Picture -> Picture -> Int -> Picture

alterV pic1 pic2 1 = pic1

alterV pic1 pic2 n = pic1 ‘above‘ alterV pic2 pic1 (n-1)

chessboard :: Int -> Picture

chessboard n = alterV bw wb n where

bw = alterH bSq wSq n

wb = alterH wSq bSq n
85

Exercise

Ensure that the lower left square of chesboard n is always black.

86

4.4 Pattern matching

Every list can be constructed from []

by repeatedly adding an element at the front
with the “cons” operator (:) :: a -> [a] -> [a]

syntactic sugar in reality
[3] 3 : []

[2, 3] 2 : 3 : []

[1, 2, 3] 1 : 2 : 3 : []

[x1, ..., xn] x1 : ... : xn : []

Note: x : y : zs = x : (y : zs)
(:) associates to the right

87

=⇒
Every list is either

[] or of the form

x : xs where

x is the head (first element, Kopf), and
xs is the tail (rest list, Rumpf)

[] and (:) are called constructors
because every list can be constructed uniquely from them.

=⇒
Every non-empty list can be decomposed uniquely into head and
tail.

Therefore these definitions make sense:
head (x : xs) = x

tail (x : xs) = xs

88

(++) is not a constructor:
[1,2,3] is not uniquely constructable with (++):
[1,2,3] = [1] ++ [2,3] = [1,2] ++ [3]

Therefore this definition does not make sense:
nonsense (xs ++ ys) = length xs - length ys

89

Patterns

Patterns are expressions
consisting only of constructors and variables.

No variable must occur twice in a pattern.

=⇒ Patterns allow unique decomposition = pattern matching.

A pattern can be

• a variable such as x or a wildcard _ (underscore)

• a literal like 1, ’a’, "xyz", . . .

• a tuple (p1, ..., pn) where each pi is a pattern

• a constructor pattern C p1 . . . pn

where C is a constructor and each pi is a pattern

Note: True and False are constructors, too!

90

Function definitions by pattern matching

Example

head :: [a] -> a

head (x : _) = x

tail :: [a] -> [a]

tail (_ : xs) = xs

null :: [a] -> Bool

null [] = True

null (_ : _) = False

91

Function definitions by pattern matching

f pat1 = e1
...
f patn = en

If f has multiple arguments:

f pat11 . . . pat1k = e1
...

Conditional equations:

f patterns | condition = e

When f is called, the equations are tried in the given order

92

Function definitions by pattern matching

Example (contrived)

true12 :: [Bool] -> Bool

true12 (True : True : _) = True

true12 _ = False

same12 :: Eq a => [a] -> [a] -> Bool

same12 (x : _) (_ : y : _) = x == y

asc3 :: Ord a => [a] -> Bool

asc3 (x : y : z : _) = x < y && y < z

asc3 (x : y : _) = x < y

asc3 _ = True

93

4.5 Recursion over lists

Example

length [] = 0

length (_ : xs) = length xs + 1

reverse [] = []

reverse (x : xs) = reverse xs ++ [x]

sum :: Num a => [a] -> a

sum [] = 0

sum (x : xs) = x + sum xs

94

Primitive recursion on lists:

f [] = base -- base case

f (x : xs) = rec -- recursive case

• base: no call of f

• rec : only call(s) f xs

f may have additional parameters.

95

Finding primitive recursive definitions

Example

concat :: [[a]] -> [a]

concat [] = []

concat (xs : xss) = xs ++ concat xss

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

96

Insertion sort

Example

inSort :: Ord a => [a] -> [a]

inSort [] = []

inSort (x:xs) = ins x (inSort xs)

ins :: Ord a => a -> [a] -> [a]

ins x [] = [x]

ins x (y:ys) | x <= y = x : y : ys

| otherwise = y : ins x ys

97

Beyond primitive recursion: Multiple arguments

Example

zip :: [a] -> [b] -> [(a,b)]

zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip _ _ = []

Alternative definition:

zip’ [] [] = []

zip’ (x:xs) (y:ys) = (x,y) : zip’ xs ys

zip’ is undefined for lists of different length!

98

Beyond primitive recursion: Multiple arguments

Example

take :: Int -> [a] -> [a]

take 0 _ = []

take _ [] = []

take i (x:xs) | i>0 = x : take (i-1) xs

99

General recursion: Quicksort

Example

quicksort :: Ord a => [a] -> [a]

quicksort [] = []

quicksort (x:xs) =

quicksort below ++ [x] ++ quicksort above

where

below = [y | y <- xs, y <= x]

above = [y | y <- xs, x < y]

100

Accumulating parameter
Idea: Result is accumulated in parameter and returned later

Example: list of all (maximal) ascending sublists in a list
ups [3,0,2,3,2,4] = [[3], [0,2,3], [2,4]]

ups2 :: Ord a => [a] -> [a] -> [[a]]

-- 1st param: input list

-- 2nd param: partial ascending sublist (reversed)

ups2 (x:xs) (y:ys)

| x >= y = ups2 xs (x:y:ys)

| otherwise = reverse (y:ys) : ups2 (x:xs) []

ups2 (x:xs) [] = ups2 xs [x]

ups2 [] ys = [reverse ys]

ups :: Ord a => [a] -> [[a]]

ups xs = ups2 xs []

101

How can we quickCheck the result of ups?

102

Convention

Identifiers of list type end in ‘s’:

xs, ys, zs, . . .

103

Mutual recursion

Example

even :: Int -> Bool

even n = n == 0 || n > 0 && odd (n-1) || odd (n+1)

odd :: Int -> Bool

odd n = n /= 0 && (n > 0 && even (n-1) || even (n+1))

104

Scoping by example

x = y + 5

y = x + 1 where x = 7

f y = y + x

> f 3

16

Binding occurrence
Bound occurrence
Scope of binding

105

Scoping by example

x = y + 5

y = x + 1 where x = 7

f y = y + x

> f 3

16

Binding occurrence
Bound occurrence
Scope of binding

106

Scoping by example

x = y + 5

y = x + 1 where x = 7

f y = y + x

> f 3

16

Binding occurrence
Bound occurrence
Scope of binding

107

Scoping by example

x = y + 5

y = x + 1 where x = 7

f y = y + x

> f 3

16

Binding occurrence
Bound occurrence
Scope of binding

108

Scoping by example

x = y + 5

y = x + 1 where x = 7

f y = y + x

> f 3

16

Binding occurrence
Bound occurrence
Scope of binding

109

Scoping by example

Summary:

• Order of definitions is irrelevant

• Parameters and where-defs are local to each equation

110

5. Proofs

Proving properties
Definedness

111

Aim

Guarentee functional (I/O) properties of software

• Testing can guarantee properties for some inputs.

• Mathematical proof can guarantee properties for all inputs.

QuickCheck is good, proof is better

Beware of bugs in the above code;
I have only proved it correct, not tried it.

Donald E. Knuth, 1977

112

5.1 Proving properties

What do we prove?

Equations e1 = e2

How do we prove them?

By using defining equations f p = t

113

A first, simple example

Remember: [] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

Proof of [1,2] ++ [] = [1] ++ [2]:

1:2:[] ++ []

= 1 : (2:[] ++ []) -- by def of ++

= 1 : 2 : ([] ++ []) -- by def of ++

= 1 : 2 : [] -- by def of ++

= 1 : ([] ++ 2:[]) -- by def of ++

= 1:[] ++ 2:[] -- by def of ++

Observation: first used equations from left to right (ok),
then from right to left (strange!)

114

A more natural proof of [1,2] ++ [] = [1] ++ [2]:

1:2:[] ++ []

= 1 : (2:[] ++ []) -- by def of ++

= 1 : 2 : ([] ++ []) -- by def of ++

= 1 : 2 : [] -- by def of ++

1:[] ++ 2:[]

= 1 : ([] ++ 2:[]) -- by def of ++

= 1 : 2 : [] -- by def of ++

Proofs of e1 = e2 are often better presented
as two reductions to some expression e:

e1 = ... = e

e2 = ... = e

115

Fact If an equation does not contain any variables, it can be
proved by evaluating both sides separately and checking that the
result is identical.

But how to prove equations with variables, for example
associativity of ++:

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

116

Properties of recursive functions are proved by induction

Induction on natural numbers: see Diskrete Strukturen

Induction on lists: here and now

117

Structural induction on lists

To prove property P(xs) for all finite lists xs

Base case: Prove P([]) and

Induction step: Prove P(xs) implies P(x:xs)

↑ ↑
induction new variable x

hypothesis (IH)

This is called structural induction on xs.
It is a special case of induction on the length of xs.

118

Example: associativity of ++

Lemma app assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

Proof by structural induction on xs

Base case:
To show: ([] ++ ys) ++ zs = [] ++ (ys ++ zs)

([] ++ ys) ++ zs

= ys ++ zs -- by def of ++

= [] ++ (ys ++ zs) -- by def of ++

Induction step:
To show: ((x:xs) ++ ys) ++ zs = (x:xs) ++ (ys ++ zs)

((x:xs) ++ ys) ++ zs

= (x : (xs ++ ys)) ++ zs -- by def of ++

= x : ((xs ++ ys) ++ zs) -- by def of ++

= x : (xs ++ (ys ++ zs)) -- by IH

(x:xs) ++ (ys ++ zs)

= x : (xs ++ (ys ++ zs)) -- by def of ++

119

Induction template

Lemma P(xs)

Proof by structural induction on xs

Base case:
To show: P([])

Proof of P([])

Induction step:
To show: P(x:xs)

Proof of P(x:xs) using IH P(xs)

120

Example: length of ++
Lemma length(xs ++ ys) = length xs + length ys

Proof by structural induction on xs

Base case:
To show: length ([] ++ ys) = length [] + length ys

length ([] ++ ys)

= length ys -- by def of ++

length [] + length ys

= 0 + length ys -- by def of length

= length ys
Induction step:
To show: length((x:xs)++ys) = length(x:xs) + length ys

length((x:xs) ++ ys)

= length(x : (xs ++ ys)) -- by def of ++

= 1 + length(xs ++ ys) -- by def of length

= 1 + length xs + length ys -- by IH

length(x:xs) + length ys

= 1 + length xs + length ys -- by def of length
121

Example: reverse of ++

Lemma reverse(xs ++ ys) = reverse ys ++ reverse xs

Proof by structural induction on xs

Base case:
To show: reverse ([] ++ ys) = reverse ys ++ reverse []

reverse ([] ++ ys)

= reverse ys -- by def of ++

reverse ys ++ reverse []

= reverse ys ++ [] -- by def of reverse

= reverse ys -- by Lemma app Nil2

Lemma app Nil2: xs ++ [] = xs

Proof exercise

122

Induction step:

To show: reverse((x:xs)++ys) = reverse ys ++ reverse(x:xs)

reverse((x:xs) ++ ys)

= reverse(x : (xs ++ ys)) -- by def of ++

= reverse(xs ++ ys) ++ [x] -- by def of reverse

= (reverse ys ++ reverse xs) ++ [x] -- by IH

= reverse ys ++ (reverse xs ++ [x]) -- by Lemma app assoc

reverse ys ++ reverse(x:xs)

= reverse ys ++ (reverse xs ++ [x]) -- by def of reverse

123

Proof heuristic

• Try QuickCheck

• Try to evaluate both sides to common term

• Try induction
• Base case: reduce both sides to a common term

using function defs and lemmas
• Induction step: reduce both sides to a common term

using function defs, IH and lemmas

• If base case or induction step fails:
conjecture, prove and use new lemmas

124

Two further tricks

• Proof by cases

• Generalization

125

Example: proof by cases

rem x [] = []

rem x (y:ys) | x==y = rem x ys

| otherwise = y : rem x ys

Lemma rem z (xs ++ ys) = rem z xs ++ rem z ys

Proof by structural induction on xs

Base case:
To show: rem z ([] ++ ys) = rem z [] ++ rem z ys

rem z ([] ++ ys)

= rem z ys -- by def of ++

rem z [] ++ rem z ys

= rem z ys -- by def of rem and ++

126

rem x [] = []

rem x (y:ys) | x==y = rem x ys

| otherwise = y : rem x ys

Induction step:
To show: rem z ((x:xs)++ys) = rem z (x:xs) ++ rem z ys

Proof by cases:

Case z == x:
rem z ((x:xs) ++ ys)

= rem z (xs ++ ys) -- by def of ++ and rem

= rem z xs ++ rem z ys -- by IH

rem z (x:xs) ++ rem z ys

= rem z xs ++ rem z ys -- by def of rem

Case z /= x:
rem z ((x:xs) ++ ys)

= x : rem z (xs ++ ys) -- by def of ++ and rem

= x : (rem z xs ++ rem z ys) -- by IH

rem z (x:xs) ++ rem z ys

= x : (rem z xs ++ rem z ys) -- by def of rem and ++
127

Inefficiency of reverse

reverse [1,2,3]

= reverse [2,3] ++ [1]

= (reverse [3] ++ [2]) ++ [1]

= ((reverse [] ++ [3]) ++ [2]) ++ [1]

= (([] ++ [3]) ++ [2]) ++ [1]

= ([3] ++ [2]) ++ [1]

= (3 : ([] ++ [2])) ++ [1]

= [3,2] ++ [1]

= 3 : ([2] ++ [1])

= 3 : (2 : ([] ++ [1]))

= [3,2,1]

128

An improvement: itrev

itrev :: [a] -> [a] -> [a]

itrev [] xs = xs

itrev (x:xs) ys = itrev xs (x:ys)

itrev [1,2,3] []

= itrev [2,3] [1]

= itrev [3] [2,1]

= itrev [] [3,2,1]

= [3,2,1]

129

Proof attempt

Lemma itrev xs [] = reverse xs

Proof by structural induction on xs

Induction step fails:
To show: itrev (x:xs) [] = reverse xs
itrev (x:xs) []

= itrev xs [x] -- by def of itrev

reverse (x:xs)

= reverse xs ++ [x] -- by def of reverse

Problem: IH not applicable because too specialized: []

130

Generalization

Lemma itrev xs ys = reverse xs ++ ys

Proof by structural induction on xs

Induction step:
To show: itrev (x:xs) ys = reverse (x:xs) ++ ys

itrev (x:xs) ys

= itrev xs (x:ys) -- by def of itrev

= reverse xs ++ (x:ys) -- by IH

reverse (x:xs) ++ ys

= (reverse xs ++ [x]) ++ ys -- by def of reverse

= reverse xs ++ ([x] ++ ys) -- by Lemma app assoc
= reverse xs ++ (x:ys) -- by def of ++

Note: IH is used with x:ys instead of ys

131

When using the IH, variables may be replaced by arbitrary
expressions, only the induction variable must stay fixed.

Justification: all variables are implicitly ∀-quantified,
except for the induction variable.

132

Induction on the length of a list

qsort :: Ord a => [a] -> [a]

qsort [] = []

qsort (x:xs) = qsort below ++ [x] ++ qsort above

where below = [y | y <- xs, y <= x]

above = [z | y <- xs, x < z]

Lemma qsort xs is sorted

Proof by induction on the length of the argument of qsort.

Induction step: In the call qsort (x:xs) we have length below

<= length xs < length(x:xs) (also for above).
Therefore qsort below and qsort above are sorted by IH.
By construction below contains only elements (<=x).
Therefore qsort below contains only elements (<=x) (proof!).
Analogously for above and (x<).
Therefore qsort (x:xs) is sorted.

133

Is that all? Or should we prove something else about sorting?

How about this sorting function?

superquicksort _ = []

Every element should occur as often in the output as in the input!

134

5.2 Definedness

Simplifying assumption, implicit so far:

No undefined values

Two kinds of undefinedness:

head [] raises exception

f x = f x + 1 does not terminate

Undefinedness can be handled, too.
But it complicates life

135

What is the problem?

Many familiar laws no longer hold unconditionally:

x - x = 0

is true only if x is a defined value.

Two examples:

• Not true: head [] - head [] = 0

• From the nonterminating definition
f x = f x + 1

we could conclude that 0 = 1.

136

Termination

Termination of a function means termination for all inputs.

Restriction:

The proof methods in this chapter assume that all recursive
definitions under consideration terminate.

Most Haskell functions we have seen so far terminate.

137

How to prove termination

Example

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

terminates because ++ terminates and with each recursive call of
reverse, the length of the argument becomes smaller.

A function f :: T1 -> T terminates
if there is a measure function m :: T1 -> N such that

• for every defining equation f p = t

• and for every recursive call f r in t: m p > m r.

Note:

• All primitive recursive functions terminate.
• m can be defined in Haskell or mathematics.
• The conditions above can be refined to take special Haskell

features into account, eg sequential pattern matching.
138

More generally: f :: T1 -> ... -> Tn -> T terminates
if there is a measure function m :: T1 -> ... -> Tn -> N
such that

• for every defining equation f p1 ... pn = t

• and for every recursive call f r1 ... rn in t:
m p1 ... pn > m r1 ... rn.

139

Infinite values

Haskell allows infinite values, in particular infinite lists.

Example: [1, 1, 1, ...]

Infinite objects must be constructed by recursion:

ones = 1 : ones

Because we restrict to terminating definitions in this chapter,
infinite values cannot arise.

Note:

• By termination of functions we really mean termination on
finite values.

• For example reverse terminates only on finite lists.

This is fine because we can only construct finite values anyway.

140

How can infinite values be useful?
Because of “lazy evaluation”.
More later.

141

Exceptions

If we use arithmetic equations like x - x = 0 unconditionally,
we can “lose” exceptions:

head xs - head xs = 0

is only true if xs /= []

In such cases, we can prove equations e1 = e2 that are only
partially correct:

If for some values for the variables in e1 and e2

e1 and e2 do not produce a runtime exception
then they evaluate to the same value.

142

Summary

• In this chapter everything must terminate

• This avoids undefined and infinite values

• This simplifies proofs

143

6. Higher-Order Functions

Applying functions to all elements of a list: map
Filtering a list: filter

Combining the elements of a list: foldr

Lambda expressions
Extensionality
Curried functions
More library functions
Case study: Counting words

144

Recall [Pic is short for Picture]

alterH :: Pic -> Pic -> Int -> Pic

alterH pic1 pic2 1 = pic1

alterH pic1 pic2 n = beside pic1 (alterH pic2 pic1 (n-1))

alterV :: Pic -> Pic -> Int -> Pic

alterV pic1 pic2 1 = pic1

alterV pic1 pic2 n = above pic1 (alterV pic2 pic1 (n-1))

Very similar. Can we avoid duplication?

alt :: (Pic -> Pic -> Pic) -> Pic -> Pic -> Int -> Pic

alt f pic1 pic2 1 = pic1

alt f pic1 pic2 n = f pic1 (alt f pic2 pic1 (n-1))

alterH pic1 pic2 n = alt beside pic1 pic2 n

alterV pic1 pic2 n = alt above pic1 pic2 n

145

Higher-order functions:
Functions that take functions as arguments

... -> (... -> ...) -> ...

Higher-order functions capture patterns of computation

146

6.1 Applying functions to all elements of a list: map

Example

map even [1, 2, 3]

= [False, True, False]

map toLower "R2-D2"

= "r2-d2"

map reverse ["abc", "123"]

= ["cba", "321"]

What is the type of map?

map :: (a -> b) -> [a] -> [b]

147

map: The mother of all higher-order functions

Predefined in Prelude.
Two possible definitions:

map f xs = [f x | x <- xs]

map f [] = []

map f (x:xs) = f x : map f xs

148

Evaluating map

map f [] = []

map f (x:xs) = f x : map f xs

map sqr [1, -2]

= map sqr (1 : -2 : [])

= sqr 1 : map sqr (-2 : [])

= sqr 1 : sqr (-2) : (map sqr [])

= sqr 1 : sqr (-2) : []

= 1 : 4 : []

= [1, 4]

149

Some properties of map

length (map f xs) = length xs

map f (xs ++ ys) = map f xs ++ map f ys

map f (reverse xs) = reverse (map f xs)

Proofs by induction

150

QuickCheck and function variables

QuickCheck does not work automatically
for properties of function variables

It needs to know how to generate and print functions.

Cheap alternative: replace function variable by specific function(s)

Example

prop_map_even :: [Int] -> [Int] -> Bool

prop_map_even xs ys =

map even (xs ++ ys) = map even xs ++ map even ys

151

6.2 Filtering a list: filter

Example

filter even [1, 2, 3]

= [2]

filter isAlpha "R2-D2"

= "RD"

filter null [[], [1,2], []]

= [[], []]

What is the type of filter?

filter :: (a -> Bool) -> [a] -> [a]

152

filter

Predefined in Prelude.
Two possible definitions:

filter p xs = [x | x <- xs, p x]

filter p [] = []

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

153

Some properties of filter

filter p (xs ++ ys) = filter p xs ++ filter p ys

filter p (reverse xs) = reverse (filter p xs)

Proofs by induction

154

6.3 Combining the elements of a list: foldr

Example

sum [] = 0

sum (x:xs) = x + sum xs

sum [x1, ..., xn] = x1 + ... + xn + 0

concat [] = []

concat (xs:xss) = xs ++ concat xss

concat [xs1, ..., xsn] = xs1 ++ ... ++ xsn ++ []

155

foldr

foldr (⊕) z [x1, ..., xn] = x1 ⊕ . . . ⊕ xn ⊕ z

Defined in Prelude:

foldr :: (a -> a -> a) -> a -> [a] -> a

foldr f a [] = a

foldr f a (x:xs) = x ‘f‘ foldr f a xs

Applications:

sum xs = foldr (+) 0 xs

concat xss = foldr (++) [] xss

What is the most general type of foldr?

156

foldr

foldr f a [] = a

foldr f a (x:xs) = x ‘f‘ foldr f a xs

foldr f a replaces
(:) by f and
[] by a

157

Evaluating foldr

foldr f a [] = a

foldr f a (x:xs) = x ‘f‘ foldr f a xs

foldr (+) 0 [1, -2]

= foldr (+) 0 (1 : -2 : [])

= 1 + foldr (+) 0 (-2 : [])

= 1 + -2 + (foldr (+) 0 [])

= 1 + (-2 + 0)

= -1

158

More applications of foldr

product xs = foldr (*) 1 xs

and xs = foldr (&&) True xs

or xs = foldr (||) False xs

inSort xs = foldr ins [] xs

159

Quiz

What is

foldr (:) ys xs

Example: foldr (:) ys (1:2:3:[]) = 1:2:3:ys

foldr (:) ys xs = ???

xs ++ ys

Proof by induction on xs (Exercise!)

160

Definining functions via foldr

• means you have understood the art of higher-order functions
• allows you to apply properties of foldr

Example

If f is associative and a ‘f‘ x = x then
foldr f a (xs++ys) = foldr f a xs ‘f‘ foldr f a ys.

Proof by induction on xs. Induction step:
foldr f a ((x:xs) ++ ys) = foldr f a (x : (xs++ys))

= x ‘f‘ foldr f a (xs++ys)

= x ‘f‘ (foldr f a xs ‘f‘ foldr f a ys) -- by IH

foldr f a (x:xs) ‘f‘ foldr f a ys

= (x ‘f‘ foldr f a xs) ‘f‘ foldr f a ys

= x ‘f‘ (foldr f a xs ‘f‘ foldr f a ys) -- by assoc.

Therefore, if g xs = foldr f a xs,
then g (xs ++ ys) = g xs ‘f‘ g ys.

Therefore sum (xs++ys) = sum xs + sum ys,
product (xs++ys) = product xs * product ys, . . .

161

6.4 Lambda expressions

Consider

squares xs = map sqr xs where sqr x = x * x

Do we really need to define sqr explicitly? No!

\x -> x * x

is the anonymous function with
formal parameter x and result x * x

In mathematics: x 7→ x ∗ x

Evaluation:

(\x -> x * x) 3 = 3 * 3 = 9

Usage:

squares xs = map (\x -> x * x) xs

162

Terminology

(\x -> e1) e2

x : formal parameter
e1: result
e2: actual parameter

Why “lambda”?

The logician Alonzo Church invented lambda calculus in the 1930s

Logicians write λx . e instead of \x -> e

163

Typing lambda expressions

Example

(\x -> x > 0) :: Int -> Bool

because x :: Int implies x > 0 :: Bool

The general rule:

(\x -> e) :: T1 -> T2

if x :: T1 implies e :: T2

164

Sections of infix operators

(+ 1) means (\x -> x + 1)

(2 *) means (\x -> 2 * x)

(2 ^) means (\x -> 2 ^ x)

(^ 2) means (\x -> x ^ 2)

etc

Example

squares xs = map (^ 2) xs

165

List comprehension

Just syntactic sugar for combinations of map

[f x | x <- xs] = map f xs

filter

[x | x <- xs, p x] = filter p xs

and concat

[f x y | x <- xs, y <- ys] =

concat (

map (

\x -> map (

\y -> f x y

) ys

) xs

)

166

6.5 Extensionality

Two functions are equal
if for all arguments they yield the same result

f , g :: T1 -> T :
∀a. f a = g a

f = g

f , g :: T1 -> T2 -> T :

∀a, b. f a b = g a b

f = g

167

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry

Example

f :: Int -> Int -> Int f :: Int -> (Int -> Int)

f x y = x+y f x = \y -> x+y

Both mean the same:

f a b (f a) b

= a + b = (\y -> a + y) b

= a + b

The trick: any function of two arguments
can be viewed as a function of the first argument
that returns a function of the second argument

168

In general

Every function is a function of one argument
(which may return a function as a result)

T1 -> T2 -> T

is just syntactic sugar for

T1 -> (T2 -> T)

f e1 e2

is just syntactic sugar for

(f e1)︸ ︷︷ ︸
::T2 -> T

e2

Analogously for more arguments

169

-> is not associative:

T1 -> (T2 -> T) 6= (T1 -> T2) -> T

Example
f :: Int -> (Int -> Int) g :: (Int -> Int) -> Int

f x y = x + y g h = h 0 + 1

Application is not associative:

(f e1) e2 6= f (e1 e2)

Example

(f 3) 4 6= f (3 4) g (id abs) 6= (g id) abs

170

Quiz

head tail xs

Correct?

171

Partial application

Every function of n parameters
can be applied to less than n arguments

Example
Instead of sum xs = foldr (+) 0 xs

just define sum = foldr (+) 0

In general:

If f :: T1 -> ... -> Tn -> T
and a1 :: T1, . . . , am :: Tm and m ≤ n
then f a1 . . . am :: Tm+1 -> ... -> Tn -> T

172

6.7 More library functions

(.) :: (b -> c) -> (a -> b) ->

f . g = \x -> f (g x)

Example

head2 = head . tail

head2 [1,2,3]

= (head . tail) [1,2,3]

= (\x -> head (tail x)) [1,2,3]

= head (tail [1,2,3])

= head [2,3]

= 2

173

const :: a -> (b -> a)

const x = \ _ -> x

curry :: ((a,b) -> c) -> (a -> b -> c)

curry f = \ x y -> f(x,y)

uncurry :: (a -> b -> c) -> ((a,b) -> c)

uncurry f = \(x,y) -> f x y

174

all :: (a -> Bool) -> [a] -> Bool

all p xs = and [p x | x <- xs]

Example

all (>1) [0, 1, 2]

= False

any :: (a -> Bool) -> [a] -> Bool

any p = or [p x | x <- xs]

Example

any (>1) [0, 1, 2]

= True

175

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile p [] = []

takeWhile p (x:xs)

| p x = x : takeWhile p xs

| otherwise = []

Example

takeWhile (not . isSpace) "the end"

= "the"

dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p [] = []

dropWhile p (x:xs)

| p x = dropWhile p xs

| otherwise = x:xs

Example

dropWhile (not . isSpace) "the end"

= " end"
176

6.8 Case study: Counting words

Input: A string, e.g. "never say never again"

Output: A string listing the words in alphabetical order, together
with their frequency,
e.g. "again: 1\nnever: 2\nsay: 1\n"

Function putStr yields
again: 1

never: 2

say: 1

Design principle:

Solve problem in a sequence of small steps
transforming the input gradually into the output

Unix pipes!

177

Step 1: Break input into words

"never say never again"

function

y words

["never", "say", "never", "again"]

Predefined in Prelude

178

Step 2: Sort words

["never", "say", "never", "again"]

function

y sort

["again", "never", "never", "say"]

Predefined in Data.List

179

Step 3: Group equal words together

["again", "never", "never", "say"]

function

y group

[["again"], ["never", "never"], ["say"]]

Predefined in Data.List

180

Step 4: Count each group

[["again"], ["never", "never"], ["say"]]y map (\ws -> (head ws, length ws)

[("again", 1), ("never", 2), ("say", 1)]

181

Step 5: Format each group

[("again", 1), ("never", 2), ("say", 1)]y map (\(w,n) -> (w ++ ": " ++ show n)

["again: 1", "never: 2", "say: 1"]

182

Step 6: Combine the lines

["again: 1", "never: 2", "say: 1"]

function

y unlines

"again: 1\nnever: 2\nsay: 1\n"

Predefined in Prelude

183

The solution

countWords :: String -> String

countWords =

unlines

. map (\(w,n) -> w ++ ": " ++ show n)

. map (\ws -> (head ws, length ws))

. group

. sort

. words

184

Merging maps

Can we merge two consecutive maps?

map f . map g = ???

map (f.g)

185

The optimized solution

countWords :: String -> String

countWords =

unlines

. map (\ws -> head ws ++ ": " ++ show(length ws))

. group

. sort

. words

186

Proving map f . map g = map (f.g)
First we prove (why?)

map f (map g xs) = map (f.g) xs

by induction on xs:

• Base case:
map f (map g []) = []

map (f.g) [] = []

• Induction step:
map f (map g (x:xs))

= f (g x) : map f (map g xs)

= f (g x) : map (f.g) xs -- by IH

map (f.g) (x:xs)

= f (g x) : map (f.g) xs

=⇒ (map f . map g) xs = map f (map g xs) = map (f.g) xs

=⇒ (map f . map g) = map (f.g) by extensionality
187

7. Type Classes

188

Remember: type classes enable overloading

Example

elem ::

Eq a => a -> [a] -> Bool

elem x = any (== x)

where Eq is the class of all types with ==

189

In general:

Type classes are collections of types
that implement some fixed set of functions

Haskell type classes are analogous to Java interfaces:
a set of function names with their types

Example

class Eq a where

(==) :: a -> a -> Bool

Note: the type of (==) outside the class context is
Eq a => a -> a -> Bool

190

The general form of a class declaration:

class C a where

f1 :: T1

...

fn :: Tn

where the Ti may involve the type variable a

191

Instance

A type T is an instance of a class C
if T supports all the functions of C .
Then we write C T .

Example

Type Int is an instance of class Eq, i.e., Eq Int

Therefore elem :: Int -> [Int] -> Bool

Warning Terminology clash:
Type T1 is an instance of type T2

if T1 is the result of replacing type variables in T2.
For example (Bool,Int) is an instance of (a,b).

192

instance

The instance statement makes a type an instance of a class.

Example

instance Eq Bool where

True == True = True

False == False = True

_ == _ = False

193

Instances can be constrained:

Example

instance Eq a => Eq [a] where

[] == [] = True

(x:xs) == (y:ys) = x == y && xs == ys

_ == _ = False

Possibly with multiple constraints:

Example

instance (Eq a, Eq b) => Eq (a,b) where

(x1,y1) == (x2,y2) = x1 == x2 && y1 == y2

194

The general form of the instance statement:

instance (context) => C T where

definitions

T is a type

context is a list of assumptions Ci Ti

definitions are definitions of the functions of class C

195

Subclasses

Example

class Eq a => Ord a where

(<=), (<) :: a -> a -> Bool

Class Ord inherits all the operations of class Eq

Because Bool is already an instance of Eq,
we can now make it an instance of Ord:

instance Ord Bool where

b1 <= b2 = not b1 || b2

b1 < b2 = b1 <= b2 && not(b1 == b2)

196

From the Prelude: Eq, Ord, Show

class Eq a where

(==), (/=) :: a -> a -> Bool

-- default definition:

x /= y = not(x==y)

class Eq a => Ord a where

(<=), (<), (>=), (>) :: a -> a -> Bool

-- default definitions:

x < y = x <= y && x /= y

x > y = y < x

x >= y = y <= x

class Show a where

show :: a -> String

197

8. Algebraic data Types

data by example
The general case
Case study: boolean formulas
Structural induction

198

So far: no really new types,
just compositions of existing types

Example: type String = [Char]

Now: data defines new types

Introduction by example: From enumerated types
to recursive and polymorphic types

199

8.1 data by example

200

Bool

From the Prelude:

data Bool = False | True

not :: Bool -> Bool

not False = True

not True = False

(&&) :: Bool -> Bool -> Bool

False && q = False

True && q = q

(||) :: Bool -> Bool -> Bool

False || q = q

True || q = True

201

deriving

instance Eq Bool where

True == True = True

False == False = True

_ == _ = False

instance Show Bool where

show True = "True"

show False = "False"

Better: let Haskell write the code for you:

data Bool = False | True

deriving (Eq, Show)

deriving supports many more classes: Ord, Read, . . .

202

Warning

Do not forget to make your data types instances of Show

Otherwise Haskell cannot even print values of your type

Warning

QuickCheck does not automatically work for data types

You have to write your own test data generator. Later.

203

Season

data Season = Spring | Summer | Autumn | Winter

deriving (Eq, Show)

next :: Season -> Season

next Spring = Summer

next Summer = Autumn

next Autumn = Winter

next Winter = Spring

204

Shape

type Radius = Float

type Width = Float

type Height = Float

data Shape = Circle Radius | Rect Width Height

deriving (Eq, Show)

Some values of type Shape: Circle 1.0

Rect 0.9 1.1

Circle (-2.0)

area :: Shape -> Float

area (Circle r) = pi * r^2

area (Rect w h) = w * h

205

Maybe

From the Prelude:

data Maybe a = Nothing | Just a

deriving (Eq, Show)

Some values of type Maybe: Nothing :: Maybe a

Just True :: Maybe Bool

Just "?" :: Maybe String

lookup :: Eq a => a -> [(a,b)] -> Maybe b

lookup key [] =

lookup key ((x,y):xys)

| key == x =

| otherwise =

206

Nat
Natural numbers:

data Nat = Zero | Suc Nat

deriving (Eq, Show)

Some values of type Nat: Zero

Suc Zero

Suc (Suc Zero)
...

add :: Nat -> Nat -> Nat

add Zero n = n

add (Suc m) n =

mul :: Nat -> Nat -> Nat

mul Zero n = Zero

mul (Suc m) n =

207

Lists
From the Prelude:

data [a] = [] | (:) a [a]

deriving Eq

The result of deriving Eq:

instance Eq a => Eq [a] where

[] == [] = True

(x:xs) == (y:ys) = x == y && xs == ys

_ == _ = False

Defined explicitly:

instance Show a => Show [a] where

show xs = "[" ++ concat cs ++ "]"

where cs = Data.List.intersperse ", " (map show xs)

208

Tree

data Tree a = Empty | Node a (Tree a) (Tree a)

deriving (Eq, Show)

Some trees:
Empty

Node 1 Empty Empty

Node 1 (Node 2 Empty Empty) Empty

Node 1 Empty (Node 2 Empty Empty)

Node 1 (Node 2 Empty Empty) (Node 3 Empty Empty)
...

209

-- assumption: < is a linear ordering

find :: Ord a => a -> Tree a -> Bool

find _ Empty = False

find x (Node a l r)

| x < a = find x l

| a < x = find x r

| otherwise = True

210

insert :: Ord a => a -> Tree a -> Tree a

insert x Empty = Node x Empty Empty

insert x (Node a l r)

| x < a = Node a (insert x l) r

| a < x = Node a l (insert x r)

| otherwise = Node a l r

Example

insert 6 (Node 5 Empty (Node 7 Empty Empty))

= Node 5 Empty (insert 6 (Node 7 Empty Empty))

= Node 5 Empty (Node 7 (insert 6 Empty) Empty)

= Node 5 Empty (Node 7 (Node 6 Empty Empty) Empty)

211

QuickCheck for Tree

import Control.Monad

import Test.QuickCheck

-- for QuickCheck: test data generator for Trees

instance Arbitrary a => Arbitrary (Tree a) where

arbitrary = sized tree

where

tree 0 = return Empty

tree n | n > 0 =

oneof [return Empty,

liftM3 Node arbitrary (tree (n ‘div‘ 2))

(tree (n ‘div‘ 2))]

212

prop_find_insert :: Int -> Int -> Tree Int -> Bool

prop_find_insert x y t =

find x (insert y t) == ???

(Int not optimal for QuickCheck)

213

Edit distance (see Thompson)

Problem: how to get from one word to another,
with a minimal number of “edits”.

Example: from "fish" to "chips"

Applications: DNA Analysis, Unix diff command

214

data Edit = Change Char

| Copy

| Delete

| Insert Char

deriving (Eq, Show)

transform :: String -> String -> [Edit]

transform [] ys = map Insert ys

transform xs [] = replicate (length xs) Delete

transform (x:xs) (y:ys)

| x == y = Copy : transform xs ys

| otherwise = best [Change y : transform xs ys,

Delete : transform xs (y:ys),

Insert y : transform (x:xs) ys]

215

best :: [[Edit]] -> [Edit]

best [x] = x

best (x:xs)

| cost x <= cost b = x

| otherwise = b

where b = best xs

cost :: [Edit] -> Int

cost = length . filter (/=Copy)

216

Example: What is the edit distance
from "trittin" to "tarantino"?

transform "trittin" "tarantino" = ?

Complexity of transform: time O(

3m+n

)

The edit distance problem can be solved in time O(mn)
with dynamic programming

217

8.2 The general case

data T a1 . . . ap =

C1 t11 . . . t1k1 |
...

Cn tn1 . . . tnkn

defines the constructors

C1 :: t11 -> ... t1k1 -> T a1 . . . ap
...

Cn :: tn1 -> ... tnkn -> T a1 . . . ap

218

Patterns revisited

Patterns are expressions that consist only of constructors and
variables (which must not occur twice):
A pattern can be

• a variable (incl. _)

• a literal like 1, ’a’, "xyz", . . .

• a tuple (p1, ..., pn) where each pi is a pattern

• a constructor pattern C p1 . . . pn where
C is a data constructor (incl. True, False, [] and (:))
and each pi is a pattern

219

8.3 Case study: boolean formulas

type Name = String

data Form = F | T

| Var Name

| Not Form

| And Form Form

| Or Form Form

deriving Eq

Example: Or (Var "p") (Not(Var "p"))

More readable: symbolic infix constructors, must start with :

data Form = F | T | Var Name

| Not Form

| Form :&: Form

| Form :|: Form

deriving Eq

Now: Var "p" :|: Not(Var "p") 220

Pretty printing

par :: String -> String

par s = "(" ++ s ++ ")"

instance Show Form where

show F = "F"

show T = "T"

show (Var x) = x

show (Not p) = par("~" ++ show p)

show (p :&: q) = par(show p ++ " & " ++ show q)

show (p :|: q) = par(show p ++ " | " ++ show q)

> Var "p" :&: Not(Var "p")

(p & (~p))

221

Syntax versus meaning

Form is the syntax of boolean formulas, not their meaning:

Not(Not T) and T mean the same but are different:

Not(Not T) /= T

What is the meaning of a Form?

Its value!?

But what is the value of Var "p" ?

222

-- Wertebelegung

type Valuation = [(Name,Bool)]

eval :: Valuation -> Form -> Bool

eval _ F = False

eval _ T = True

eval v (Var x) = the(lookup x v) where the(Just b) = b

eval v (Not p) = not(eval v p)

eval v (p :&: q) = eval v p && eval v q

eval v (p :|: q) = eval v p || eval v q

> eval [("a",False), ("b",False)]

(Not(Var "a") :&: Not(Var "b"))

True

223

All valuations for a given list of variable names:

vals :: [Name] -> [Valuation]

vals [] = [[]]

vals (x:xs) = [(x,False):v | v <- vals xs] ++

[(x,True):v | v <- vals xs]

vals ["b"]

= [("b",False):v | v <- vals [[]]] ++

[("b",True):v | v <- vals [[]]]

= [("b",False):[]] ++ [("b",True):[]]

= [("b",False), ("b",True)]

vals ["a","b"]

= [("a",False):v | v <- vals ["b"]] ++

[("a",True):v | v <- vals ["b"]]

= [[("a",False),("b",False)] ++ [("a",False),("b",True)] ++

[[("a",True), ("b",False)] ++ [("a",True), ("b",True)]

224

Does vals construct all valuations?

prop_vals1 xs =

length(vals xs) == 2 ^ length xs

prop_vals2 xs =

distinct (vals xs)

distinct :: Eq a => [a] -> Bool

distinct [] = True

distinct (x:xs) = not(elem x xs) && distinct xs

Demo

225

Restrict size of test cases:

prop_vals1’ xs =

length xs <= 10 ==>

length(vals xs) == 2 ^ length xs

prop_vals2’ xs =

length xs <= 10 ==> distinct (vals xs)

Demo

226

Satisfiable and tautology

satisfiable :: Form -> Bool

satisfiable p = or [eval v p | v <- vals(vars p)]

tautology :: Form -> Bool

tautology = not . satisfiable . Not

vars :: Form -> [Name]

vars F = []

vars T = []

vars (Var x) = [x]

vars (Not p) = vars p

vars (p :&: q) = nub (vars p ++ vars q)

vars (p :|: q) = nub (vars p ++ vars q)

227

p0 :: Form

p0 = (Var "a" :&: Var "b") :|:

(Not (Var "a") :&: Not (Var "b"))

> vals (vars p0)

[[("a",False),("b",False)], [("a",False),("b",True)],

[("a",True), ("b",False)], [("a",True), ("b",True)]]

> [eval v p0 | v <- vals (vars p0)]

[True, False, False, True]

> satisfiable p0

True

228

Simplifying a formula: Not inside?

isSimple :: Form -> Bool

isSimple (Not p) = not (isOp p)

where

isOp (Not p) = True

isOp (p :&: q) = True

isOp (p :|: q) = True

isOp p = False

isSimple (p :&: q) = isSimple p && isSimple q

isSimple (p :|: q) = isSimple p && isSimple q

isSimple p = True

229

Simplifying a formula: Not inside!

simplify :: Form -> Form

simplify (Not p) = pushNot (simplify p)

where

pushNot (Not p) = p

pushNot (p :&: q) = pushNot p :|: pushNot q

pushNot (p :|: q) = pushNot p :&: pushNot q

pushNot p = Not p

simplify (p :&: q) = simplify q :&: simplify q

simplify (p :|: q) = simplify p :|: simplify q

simplify p = p

230

Quickcheck

-- for QuickCheck: test data generator for Form

instance Arbitrary Form where

arbitrary = sized prop

where

prop 0 =

oneof [return F,

return T,

liftM Var arbitrary]

prop n | n > 0 =

oneof

[return F,

return T,

liftM Var arbitrary,

liftM Not (prop (n-1)),

liftM2 (:&:) (prop(n ‘div‘ 2)) (prop(n ‘div‘ 2)),

liftM2 (:|:) (prop(n ‘div‘ 2)) (prop(n ‘div‘ 2))]
231

prop_simplify p = isSimple(simplify p)

232

8.4 Structural induction

233

Structural induction for Tree

data Tree a = Empty | Node a (Tree a) (Tree a)

To prove property P(t) for all finite t :: Tree a

Base case: Prove P(Empty) and

Induction step: Prove P(Node x t1 t2)

assuming the induction hypotheses P(t1) and P(t2).
(x, t1 and t2 are new variables)

234

Example

flat :: Tree a -> [a]

flat Empty = []

flat (Node x t1 t2) =

flat t1 ++ [x] ++ flat t2

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f Empty = Empty

mapTree f (Node x t1 t2) =

Node (f x) (mapTree f t1) (mapTree f t2)

235

Lemma flat (mapTree f t) = map f (flat t)

Proof by structural induction on t

Induction step:

IH1: flat (mapTree f t1) = map f (flat t1)

IH2: flat (mapTree f t2) = map f (flat t2)

To show: flat (mapTree f (Node x t1 t2)) =

map f (flat (Node x t1 t2))

flat (mapTree f (Node x t1 t2))

= flat (Node (f x) (mapTree f t1) (mapTree f t2))

= flat (mapTree f t1) ++ [f x] ++ flat (mapTree f t2)

= map f (flat t1) ++ [f x] ++ map f (flat t2)

-- by IH1 and IH2

map f (flat (Node x t1 t2))

= map f (flat t1 ++ [x] ++ flat t2)

= map f (flat t1) ++ [f x] ++ map f (flat t2)

-- by lemma distributivity of map over ++

Note: Base case and -- by def of ... omitted
236

The general (regular) case

data T a = ...

Assumption: T is a regular data type:

Each constructor Ci of T must have a type
t1 -> ... -> tni -> T a

such that each tj is either T a or does not contain T

To prove property P(t) for all finite t :: T a:
prove for each constructor Ci that P(Ci x1 . . . xni)
assuming the induction hypotheses P(xj) for all j s.t. tj = T a

Example of non-regular type: data T = C [T]

237

9. Modules and Abstract Data Types

Modules
Abstract Data Types
Correctness

238

9.1 Modules

Module = collection of type, function, class etc definitions

Purposes:

• Grouping

• Interfaces

• Division of labour

• Name space management: M.f vs f

• Information hiding

GHC: one module per file

Recommendation: module M in file M.hs

239

Module header

module M where -- M must start with capital letter

↑
All definitions must start in this column

• Exports everything defined in M (at the top level)

Selective export:

module M (T, f, ...) where

• Exports only T, f, ...

240

Exporting data types

module M (T) where

data T = ...

• Exports only T, but not its constructors

module M (T(C,D,...)) where

data T = ...

• Exports T and its constructors C, D, . . .

module M (T(..)) where

data T = ...

• Exports T and all of its constructors

Not permitted: module M (T,C,D) where (why?)
241

Exporting modules
By default, modules do not export names from imported modules

module B where

import A

...

module A where

f = ...

...

=⇒ B does not export f

Unless the names are mentioned in the export list

module B (f) where

import A

...

Or the whole module is exported

module B (module A) where

import A

...

242

import
By default, everything that is exported is imported

module B where

import A

...

module A where

f = ...

g = ...

=⇒ B imports f and g

Unless an import list is specified

module B where

import A (f)

...

=⇒ B imports only f

Or specific names are hidden

module B where

import A hiding (g)

...
243

qualified

import A

import B

import C

... f ...

Where does f come from??

Clearer: qualified names

... A.f ...

Can be enforced:

import qualified A

=⇒ must always write A.f

244

Renaming modules

import TotallyAwesomeModule

... TotallyAwesomeModule.f ...

Painful

More readable:

import qualified TotallyAwesomeModule as TAM

... TAM.f ...

245

For the full description of the module system
see the Haskell report

246

http://www.haskell.org/onlinereport/haskell2010/haskellch5.html

9.2 Abstract Data Types

Abstract Data Types do not expose their internal representation

Why? Example: sets implemented as lists without duplicates

• Could create illegal value: [1, 1]

• Could distinguish what should be indistinguishable:
[1, 2] /= [2, 1]

• Cannot easily change representation later

247

Example: Sets

module Set where

-- sets are represented as lists w/o duplicates

type Set a = [a]

empty :: Set a

empty = []

insert :: a -> Set a -> Set a

insert x xs = ...

isin :: a -> Set a -> Set a

isin x xs = ...

size :: Set a -> Integer

size xs = ...

Exposes everything
Allows nonsense like Set.size [1,1]

248

Better

module Set (Set, empty, insert, isin, size) where

-- Interface

empty :: Set a

insert :: Eq a => a -> Set a -> Set a

isin :: Eq a => a -> Set a -> Bool

size :: Set a -> Int

-- Implementation

type Set a = [a]

...

• Explicit export list/interface

• But representation still not hidden
Does not help: hiding the type name Set

249

Hiding the representation

module Set (Set, empty, insert, isin, size) where

-- Interface

...

-- Implementation

data Set a = S [a]

empty = S []

insert x (S xs) = S(if elem x xs then xs else x:xs)

isin x (S xs) = elem x xs

size (S xs) = length xs

Cannot construct values of type Set outside of module Set

because S is not exported

Test.hs:3:11: Not in scope: data constructor ‘S’

250

Uniform naming convention: S Set

module Set (Set, empty, insert, isin, size) where

-- Interface

...

-- Implementation

data Set a = Set [a]

empty = Set []

insert x (Set xs) = Set(if elem x xs then xs else x:xs)

isin x (Set xs) = elem x xs

size (Set xs) = length xs

Which Set is exported?

251

Slightly more efficient: newtype

module Set (Set, empty, insert, isin, size) where

-- Interface

...

-- Implementation

newtype Set a = Set [a]

empty = Set []

insert x (Set xs) = Set(if elem x xs then xs else x:xs)

isin x (Set xs) = elem x xs

size (Set xs) = length xs

252

Conceptual insight

Data representation can be hidden
by wrapping data up in a constructor that is not exported

253

What if Set is already a data type?

module SetByTree (Set, empty, insert, isin, size) where

-- Interface

empty :: Set a

insert :: Ord a => a -> Set a -> Set a

isin :: Ord a => a -> Set a -> Bool

size :: Set a -> Integer

-- Implementation

type Set a = Tree a

data Tree a = Empty | Node a (Tree a) (Tree a)

No need for newtype:
The representation of Tree is hidden
as long as its constructors are hidden

254

Beware of ==

module SetByTree (Set, empty, insert, isin, size) where

...

type Set a = Tree a

data Tree a = Empty | Node a (Tree a) (Tree a)

deriving (Eq)

...

Class instances are automatically exported and cannot be hidden

Client module:

import SetByTree

... insert 2 (insert 1 empty) ==

insert 1 (insert 2 empty)

...

Result is probably False — representation is partly exposed!
255

The proper treatment of ==

Some alternatives:

• Do not make Tree an instance of Eq

• Hide representation:

-- do not export constructor Set:

newtype Set a = Set (Tree a)

data Tree a = Empty | Node a (Tree a) (Tree a)

deriving (Eq)

• Define the right == on Tree:

instance Eq a => Eq(Tree a) where

t1 == t2 = elems t1 == elems t2

where

elems Empty = []

elems (Node x t1 t2) = elems t1 ++ [x] ++ elems t2

256

Similar for all class instances,
not just Eq

257

9.3 Correctness

Why is module Set a correct implementation of (finite) sets?

Because empty simulates {}
and insert _ _ simulates { } ∪
and isin _ _ simulates ∈
and size _ simulates | |

Each concrete operation on the implementation type of lists
simulates its abstract counterpart on sets

NB: We relate Haskell to mathematics

For uniformity we write {a} for the type of finite sets over type a

258

From lists to sets

Each list [x1,...,xn] represents the set {x1, . . . , xn}.

Abstraction function α :: [a] -> {a}
α[x1, . . . , xn] = {x1, . . . , xn}

In Haskell style: α [] = {}
α (x:xs) = {x} ∪ α xs

What does it mean that “lists simulate (implement) sets”:

α (concrete operation) = abstract operation

α empty = {}
α (insert x xs) = {x} ∪ α xs

isin x xs = x ∈ α xs

size xs = |α xs|

259

For the mathematically enclined:
α must be a homomorphism

260

Implementation I: lists with duplicates

empty = []

insert x xs = x : xs

isin x xs = elem x xs

size xs = length(nub xs)

The simulation requirements:

α empty = {}
α (insert x xs) = {x} ∪ α xs

isin x xs = x ∈ α xs

size xs = |α xs|
Two proofs immediate, two need lemmas proved by induction

261

Implementation II: lists without duplicates

empty = []

insert x xs = if elem x xs then xs else x:xs

isin x xs = elem x xs

size xs = length xs

The simulation requirements:

α empty = {}
α (insert x xs) = {x} ∪ α xs

isin x xs = x ∈ α xs

size xs = |α xs|
Needs invariant that xs contains no duplicates

invar :: [a] -> Bool

invar [] = True

invar (x:xs) = not(elem x xs) && invar xs

262

Implementation II: lists without duplicates

empty = []

insert x xs = if elem x xs then xs else x:xs

isin x xs = elem x xs

size xs = length xs

Revised simulation requirements:

α empty = {}
invar xs =⇒ α (insert x xs) = {x} ∪ α xs

invar xs =⇒ isin x xs = x ∈ α xs

invar xs =⇒ size xs = |α xs|
Proofs omitted. Anything else?

263

invar must be invariant!

In an imperative context:

If invar is true before an operation,
it must also be true after the operation

In a functional context:

If invar is true for the arguments of an operation,
it must also be true for the result of the operation

invar is preserved by every operation

invar empty

invar xs =⇒ invar (insert x xs)

Proofs do not even need induction

264

Summary
Let C and A be two modules that have the same interface:

a type T and a set of functions F
To prove that C is a correct implementation of A define

an abstraction function α :: C .T -> A.T
and an invariant invar :: C .T -> Bool

and prove for each f ∈ F :

• invar is invariant:

invar x1 ∧ · · · ∧ invar xn =⇒ invar (C .f x1 . . . xn)

(where invar is True on types other than C .T)

• C .f simulates A.f :

invar x1 ∧ · · · ∧ invar xn =⇒
α(C .f x1 . . . xn) = A.f (α x1) . . . (α xn)

(where α is the identity on types other than C .T)
265

10. Case Study: Huffman Coding

266

See Thompson, blackboard and the source files on the web page

267

11. Case Study: Parsing

268

See blackboard and the source files on the web page

269

12. Lazy evaluation

Applications of lazy evaluation
Infinite lists

270

Introduction

So far, we have not looked at the details of how Haskell
expressions are evaluated. The evaluation strategy is called

lazy evaluation (,,verzögerte Auswertung”)

Advantages:

• Avoids unnecessary evaluations

• Terminates as often as possible

• Supports infinite lists

• Increases modularity

Therefore Haskell is called a lazy functional langauge.
Haskell is the only mainstream lazy functional language.

271

Evaluating expressions

Expressions are evaluated (reduced) by successively applying
definitions until no further reduction is possible.

Example:

sq :: Integer -> Integer

sq n = n * n

One evaluation:

sq(3+4) = sq 7 = 7 * 7 = 49

Another evaluation:

sq(3+4) = (3+4) * (3+4) = 7 * (3+4) = 7 * 7 = 49

272

Theorem
Any two terminating evaluations of the same Haskell expression
lead to the same final result.

This is not the case in languages with side effects:

Example

Let n have value 0 initially.

Two evaluations:

n + (n := 1) = 0 + (n := 1) = 0 + 1 = 1

n + (n := 1) = n + 1 = 1 + 1 = 2

273

Reduction strategies
An expression may have many reducible subexpressions:

sq (3+4)

Terminology: redex = reducible expression

Two common reduction strategies:

Innermost reduction Always reduce an innermost redex.
Corresponds to call by value:
Arguments are evaluated
before they are substituted into the function body
sq (3+4) = sq 7 = 7 * 7

Outermost reduction Always reduce an outermost redex.
Corresponds to call by name:
The unevaluated arguments
are substituted into the the function body
sq (3+4) = (3+4) * (3+4)

274

Comparison: termination

Definition:
loop = tail loop

Innermost reduction:
fst (1,loop) = fst(1,tail loop)

= fst(1,tail(tail loop))

= ...

Outermost reduction:

fst (1,loop) = 1

Theorem If expression e has a terminating reduction sequence,
then outermost reduction of e also terminates.

Outermost reduction terminates as often as possible

275

Why is this useful?

Example

Can build your own control constructs:

switch :: Int -> a -> a -> a

switch n x y

| n > 0 = x

| otherwise = y

fac :: Int -> Int

fac n = switch n (n * fac(n-1)) 1

276

Comparison: Number of steps

Innermost reduction:

sq (3+4) = sq 7 = 7 * 7 = 49

Outermost reduction:

sq(3+4) = (3+4)*(3+4) = 7*(3+4) = 7*7 = 49

More outermost than innermost steps!
How can outermost reduction be improved?

Sharing!

277

sq(3+4) = • ∗ • = • ∗ • = 49

↘ ↙ ↘ ↙
3+4 7

The expression 3+4 is only evaluated once!

Lazy evaluation := outermost reduction + sharing

Theorem
Lazy evaluation never needs more steps than innermost reduction.

278

The principles of lazy evaluation:

• Arguments of functions are evaluated only
if needed to continue the evaluation of the function.

• Arguments are not necessarily evaluated fully,
but only far enough to evaluate the function.
(Remember fst (1,loop))

• Each argument is evaluated at most once (sharing!)

279

Pattern matching

Example

f :: [Int] -> [Int] -> Int

f [] ys = 0

f (x:xs) [] = 0

f (x:xs) (y:ys) = x+y

Lazy evaluation:

f [1..3] [7..9] -- does f.1 match?

= f (1 : [2..3]) [7..9] -- does f.2 match?

= f (1 : [2..3]) (7 : [8..9]) -- does f.3 match?

= 1+7

= 8

280

Guards
Example

f m n p | m >= n && m >= p = m

| n >= m && n >= p = n

| otherwise = p

Lazy evaluation:
f (2+3) (4-1) (3+9)

? 2+3 >= 4-1 && 2+3 >= 3+9

? = 5 >= 3 && 5 >= 3+9

? = True && 5 >= 3+9

? = 5 >= 3+9

? = 5 >= 12

? = False

? 3 >= 5 && 3 >= 12

? = False && 3 >= 12

? = False

? otherwise = True

= 12 281

where

Same principle: definitions in where clauses are only evaluated
when needed and only as much as needed.

282

Lambda

Haskell never reduces inside a lambda

Example: \x -> False && x cannot be reduced
Reasons:

• Functions are black boxes

• All you can do with a function is apply it

Example:
(\x -> False && x) True = False && True = False

283

Predefined functions

They behave like their Haskell definition (if they have one):

(&&) :: Bool -> Bool -> Bool

True && y = y

False && y = False

Or they evaluate their arguments first: basic arithmetic

284

Slogan

Lazy evaluation evaluates an expression only when needed
and only as much as needed.

(“Call by need”)

285

12.1 Applications of lazy evaluation

286

The minimum of a list

min = head . inSort

inSort :: Ord a => [a] -> [a]

inSort [] = []

inSort (x:xs) = ins x (inSort xs)

ins :: Ord a => a -> [a] -> [a]

ins x [] = [x]

ins x (y:ys) | x <= y = x : y : ys

| otherwise = y : ins x ys

=⇒ inSort [6,1,7,5]

= ins 6 (ins 1 (ins 7 (ins 5 [])))

287

min [6,1,7,5] = head(inSort [6,1,7,5])

= head(ins 6 (ins 1 (ins 7 (ins 5 []))))

= head(ins 6 (ins 1 (ins 7 (5 : []))))

= head(ins 6 (ins 1 (5 : ins 7 [])))

= head(ins 6 (1 : 5 : ins 7 []))

= head(1 : ins 6 (5 : ins 7 [])))

= 1

Lazy evaluation needs only linear time
although inSort is quadratic

because the sorted list is never constructed completely

Warning: this depends on the exact algorithm and does not work
so nicely with all sorting functions!

288

Parser: all results

type Parser a b = [a] -> Maybe (b, [a])

type Parser a b = [a] -> [(b, [a])]

289

p1 ||| p2 = \as -> case p1 as of

Nothing -> p2 as

just -> just

p1 ||| p2 = \xs -> p1 xs ++ p2 xs

290

p1 *** p2 = \xs ->

case p1 xs of

Nothing -> Nothing

Just(b,ys) -> case p2 ys of

Nothing -> Nothing

Just(c,zs) -> Just((b,c),zs)

p1 *** p2 = \xs ->

[((b,c),zs) | (b,ys) <- p1 xs, (c,zs) <- p2 ys]

291

p >>> f = \xs ->

case p xs of

Nothing -> Nothing

Just(b, ys) -> Just(f b, ys)

p >>> f = [(f b,ys) | (b,ys) <- p xs]

292

12.2 Infinite lists

293

Example

A recursive definition

ones :: [Int]

ones = 1 : ones

that defines an infinite list of 1s:

ones = 1 : ones = 1 : 1 : ones = ...

What GHCi has to say about it:
> ones

[1,1

Haskell lists can be finite or infinite

Printing an infinite list does not terminate

294

But Haskell can compute with infinite lists, thanks to lazy
evaluation:

> head ones

1

Remember:

Lazy evaluation evaluates an expression only as much as needed

Outermost reduction: head ones = head (1 : ones) = 1

Innermost reduction: head ones

= head (1 : ones)

= head (1 : 1 : ones)

= ...

295

Haskell lists are never actually infinite but only potentially infinite

Lazy evaluation computes as much of the infinite list as needed

This is how partially evaluated lists are represented internally:

1 : 2 : 3 : code pointer to compute rest

In general: finite prefix followed by code pointer

296

Why (potentially) infinite lists?

• They come for free with lazy evaluation

• They increase modularity:
list producer does not need to know
how much of the list the consumer wants

297

Example: The sieve of Eratosthenes

1 Create the list 2, 3, 4, . . .

2 Output the first value p in the list as a prime.

3 Delete all multiples of p from the list

4 Goto step 2

2 3 4 5 6 7 8 9 10 11 12 . . .
2 3 5 7 11 . . .

298

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

In Haskell:

primes :: [Int]

primes = sieve [2..]

sieve :: [Int] -> [Int]

sieve (p:xs) = p : sieve [x | x <- xs, x ‘mod‘ p /= 0]

Lazy evaluation:

primes = sieve [2..] = sieve (2:[3..])

= 2 : sieve [x | x <- [3..], x ‘mod‘ 2 /= 0]

= 2 : sieve [x | x <- 3:[4..], x ‘mod‘ 2 /= 0]

= 2 : sieve (3 : [x | x <- [4..], x ‘mod‘ 2 /= 0])

= 2 : 3 : sieve [x | x <- [x|x <- [4..], x ‘mod‘ 2 /= 0],

x ‘mod‘ 3 /= 0]

= ...

299

Modularity!

The first 10 primes:

> take 10 primes

[2,3,5,7,11,13,17,19,23,29]

The primes between 100 and 150:

> takeWhile (<150) (dropWhile (<100) primes)

[101,103,107,109,113,127,131,137,139,149]

All twin primes:

> [(p,q) | (p,q) <- zip primes (tail primes), p+2==q]

[(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),(59,61),(71,73),(101,103),(107,109)

300

Primality test?

> 101 `elem` primes

True

> 102 `elem` primes

nontermination

prime n = n == head (dropWhile (<n) primes)

301

13. I/O and Monads

I/O
Monads

302

13.1 I/O

• So far, only batch programs:
given the full input at the beginning,
the full output is produced at the end

• Now, interactive programs:
read input and write output
while the program is running

303

The problem

• Haskell programs are pure mathematical functions:

Haskell programs have no side effects

• Readind and writing are side effects:

Interactive programs have side effects

304

An impure solution

Most languages allow functions to perform I/O
without reflecting it in their type.

Assume that Haskell were to provide an input function

inputInt :: Int

Now all functions are potentially perform side effects.

Now we can no longer reason about Haskell like in mathematics:

inputInt - inputInt = 0

inputInt + inputInt = 2*inputInt

...

are no longer true.

305

The pure solution

Haskell distinguishes expressions without side effects
from expressions with side effects (actions) by their type:

IO a

is the type of (I/O) actions that return a value of type a.

Example

Char: the type of pure expressions that return a Char

IO Char: the type of actions that return an Char

IO (): the type of actions that return no result value

306

()

• Type () is the type of empty tuples (no fields).

• The only value of type () is (), the empty tuple.

• Therefore IO () is the type of actions
that return the dummy value ()

(because every action must return some value)

307

Basic actions

• getChar :: IO Char

Reads a Char from standard input,
echoes it to standard output,
and returns it as the result

• putChar :: Char -> IO ()

Writes a Char to standard output,
and returns no result

• return :: a -> IO a

Performs no action,
just returns the given value as a result

308

Sequencing: do

A sequence of actions can be combined into a single action
with the keyword do

Example

get2 :: IO (Char,Char)

get2 = do x <- getChar -- result is named x

getChar -- result is ignored

y <- getChar

return (x,y)

309

General format (observe layout!):

do a1
...

an

where each ai can be one of

• an action
Effect: execute action

• x <- action
Effect: execute action, give result the name x

• let x = expr
Effect: give expr the name x
Lazy: expr is only evaluated when x is needed!

310

Derived primitives

Write a string to standard output:

putStr :: String -> IO ()

putStr [] = return ()

putStr (c:cs) = do putChar c

putStr cs

Write a line to standard output:

putStrLn :: IO ()

putStrLn cs = putStr (cs ++ ’\n’)

311

Read a line from standard input:

getLine :: IO String

getLine = do x <- getChar

if x == ’\n’ then

return []

else

do xs <- getLine

return (x:xs)

Actions are normal Haskell values and can be combined as usual,
for example with if-then-else.

312

Example

Prompt for a string and display its length:

strLen :: IO ()

strLen = do putStr "Enter a string: "

xs <- getLine

putStr "The string has "

putStr (show (length xs))

putStrLn " characters"

> strLen

Enter a string: abc

The string has 3 characters

313

How to read other types

Input string and convert

Useful class:

class Read a where

read :: String -> a

Most predefined types are in class Read.

Example:

getInt :: IO Integer

getInt = do xs <- getLine

return (read xs)

314

File I/O

So far implicit: read from stdin :: Handle

write to stdout :: Handle

data Handle

Haskell defines operations to read and write characters
from and to files, represented by values of type Handle.
Each value of this type is a handle: a record used by the
Haskell run-time system to manage I/O with file system
objects.

Details: Haskell IO library

315

http://www.haskell.org/ghc/docs/7.4-latest/html/libraries/haskell98-2.0.0.1/IO.html

Case study

The game of Hangman
in file Hang.hs

316

Once IO, always IO

You cannot add I/O to a function without “polluting” its type

For example

sq :: Int -> Int cube :: Int -> Int

sq x = x*x cube x = x * sq x

Let us try to make sq print out some message:

sq x = do putStr("I am in sq!")

return(x*x)

What is the type of sq now? Int -> IO Int

And this is what happens to cube:

cube x = do x2 <- sq x

return(x * x2)

317

Haskell is a pure functional language
Functions that have side effects must show this in their type

I/O is a side effect

318

13.2 Monads

319

>>= (‘bind’), or what do really means
Primitive:

(>>=) :: IO a -> (a -> IO b) -> IO b

How it works:
act >>= f execute action act :: IO a

which returns a result v :: a

then evaluate f v
which returns a result of type IO b

do x <- act1
act2

is syntax for act1 >>= (\x -> act2)

Example

do x <- getChar

putChar x
 getChar >>= (\x -> putChar x)

320

In general

do x1 <- a1
...

xn <- an
act

is syntax for

a1 >>= \x1 ->
...

an >>= \xn ->

act

321

Beyond IO: Monads

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

• m is a type constructor

• do notation is defined for every monad

Only example of monad so far: IO

Let’s examine some more.

322

Maybe as a monad

A frequent code pattern when working with Maybe:

case m of

Nothing -> Nothing

Just x -> ...

This pattern can be hidden inside >>=:

instance Monad Maybe where

m >>= f = case m of

Nothing -> Nothing

Just x -> f x

return v = Just v

Failure (= Nothing) propagation and unwrapping of Just is now
built into do!

323

instance Monad Maybe where

m >>= f = case m of

Nothing -> Nothing

Just x -> f x

return v = Just v

Example: evaluation of Form

eval :: [(Name,Bool)] -> Form -> Maybe Bool

eval _ T = return True

eval _ F = return False

eval v (Var x) = lookup x v

eval v (f1 :&: f2) = do b1 <- eval v f1

b2 <- eval v f2

return (b1 && b2)

...

324

Example:

p1 *** p2 = \xs ->

case p1 xs of

Nothing -> Nothing

Just(b,ys) -> case p2 ys of

Nothing -> Nothing

Just(c,zs) -> Just((b,c),zs)

p1 *** p2 = \xs ->

do (b,ys) <- p1 xs

(c,zs) <- p2 ys

return ((b,c),zs)

The do version has a much more general type Monad m => ...

325

Maybe models possible failure with Just/Nothing

The do of the Maybe monad hides Just/Nothing
and propagates failure automatically

326

List as a monad

instance Monad [] where

xs >>= f = concat(map f xs)

return v = [v]

Now we can compose computations on list nicely (via do).

Example

dfs :: (a -> [a]) -> (a -> Bool) -> a -> [a]

dfs nexts found start = find start

where

find x = if found x then return x

else do x’ <- nexts x

find x’

The Haskell way of backtracking
Lazy evaluation produces only as many elements as you ask for.

327

14. Complexity and Optimization

Time complexity analysis
Optimizing functional programs

328

How to analyze and improve the time (and space) complexity
of functional programs

Based largely on Richard Bird’s book
Introduction to Functional Programming using Haskell.

Assumption in this section:

Reduction strategy is innermost (call by value, cbv)

• Analysis much easier

• Most languages follow cbv

• Number of lazy evaluation steps ≤ number of cbv steps
=⇒ O-analysis under cbv also correct for Haskell

but can be too pessismistic

329

14.1 Time complexity analysis

Basic assumption:

One reduction step takes one time unit

(No guards on the left-hand side of an equation,
if-then-else on the righ-hand side instead)

Justification:

The implementation does not copy data structures
but works with pointers and sharing

Example: length (: xs) = length xs + 1

Reduce length [1,2,3]

Compare: id [] = []

id (x:xs) = x : id xs
Reduce id [e1,e2]

Copies list but shares elements.

330

Tf(n) = number of steps required for the evaluation of f
when applied to an argument of size n
in the worst case

What is “size”?

• Number of bits. Too low level.

• Better: specific measure based on the argument type of f

• Measure may differ from function to function.

• Frequent measure for functions on lists: the length of the list
We use this measure unless stated otherwise
Sufficient if f does not compute with the elements of the list
Not sufficient for function . . .

331

How to calculate (not mechanically!) Tf(n):

1 From the equations for f derive equations for Tf

2 If the equations for Tf are recursive, solve them

332

Example

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

T++(0, n) = O(1)
T++(m + 1, n) = T++(m, n) + O(1)

=⇒ T++(m, n) = O(m)

Note: (++) creates copy of first argument

Principle:

Every constructor of an algebraic data type takes time O(1).
A constant amount of space needs to be allocated.

333

Example

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

Treverse(0) = O(1)
Treverse(n + 1) = Treverse(n) + T++(n, 1)

=⇒ T++(n) = O(n2)

Observation:

Complexity analysis may need functional properties
of the algorithm

334

The worst case time complexity of an expression e:

Sum up all Tf(n1, ..., nk)
where f e1 en is a function call in e
and ni is the size of ei

(assumption: no higher-order functions)

Note: examples so far equally correct with Θ(.) instead of O(.),
both for cbv and lazy evaluation. (Why?)

Consider min xs = head(sort xs)

Tmin(n) = Tsort(n) + Thead(n)

For cbv also a lower bound, but not for lazy evaluation.

Complexity analysis is compositional under cbv

335

14.2 Optimizing functional programs

Premature optimization is the root of all evil
Don Knuth

But we are in week n − 1 now ;-)

The ideal of program optimization:

1 Write (possibly) inefficient but correct code

2 Optimize your code and prove equivelence to correct version

336

Tail rercursion / Endrekursion

The definition of a function f is tail recursive / endrekursiv
if every recursive call is in “end position”,
= it is the last function call before leaving f,
= nothing happens afterwards
= no call of f is not nested in another function call

Example

length [] = 0

length (x:xs) = length xs + 1

length2 [] n = n

length2 (x:xs) n = length2 xs (n+1)

337

length [] = 0

length (x:xs) = length xs + 1

length2 [] n = n

length2 (x:xs) n = length2 xs (n+1)

Compare executions:

length [a,b,c]

= length [b,c] + 1

= (length [c] + 1) + 1

= ((length [] + 1) + 1) + 1

= ((0 + 1) + 1) + 1

= 3

length2 [a,b,c] 0

= length2 [b,c] 1

= length2 [c] 2

= length2 [] 3

= 3
338

Fact Tail recursive definitions can be compiled into loops.
Not just in functional languages.

No (additional) stack space is needed
to execute tail recursive functions

Example

length2 [] n = n

length2 (x:xs) n = length2 xs (n+1)

loop: if null xs then return n

xs := tail xs

n := n+1

goto loop

339

Tail rercursion / Endrekursion

The definition of a function f is tail recursive / endrekursiv
if every recursive call is in “end position”,
= it is the last function call before leaving f,
= nothing happens afterwards
= no call of f is not nested in another function call

Example

length [] = 0

length (x:xs) = length xs + 1

length2 [] n = n

length2 (x:xs) n = length2 xs (n+1)

340

Accumulating parameters

An accumulating parameter is a parameter where intermediate
results are accumulated.
Purpose:

• tail recursion

• replace (++) by (:)

length2 [] n = n

length2 (x:xs) n = length2 xs (n+1)

length’ xs = length2 xs 0

Correctness:

Lemma length2 xs n = length xs + n

=⇒ length’ xs = length xs

341

Tupling of results

Typical application:

Avoid multiple traversals of the same data structure

average :: [Float] -> Float

average xs = (sum xs) / (length xs)

Requires two traversals of the argument list.

342

Avoid intermediate data structures

Typical example: map g . map f = map (g . f)

Another example: sum [n..m]

343

Lazy evaluation

Not everything that is good for cbv is good for lazy evaluation

Problem: lazy evaluation may leave many expressions unevaluated
until the end, which requires more space

Space is time because it requires garbage collection — not counted
by number of reductions!

344

	Organisatorisches
	Functional Programming: The Idea
	Basic Haskell
	Lists
	Proofs
	Higher-Order Functions
	Type Classes
	Algebraic =1=data Types
	Modules and Abstract Data Types
	Case Study: Huffman Coding
	Case Study: Parsing
	Lazy evaluation
	I/O and Monads
	Complexity and Optimization

