
Interactive Software Verification SS 2013
htts://www21.in.tum.de/teaching/isv/SS13

SHEET 8
List Manipulations

(Page 1 / 2)

H. Gast, L. Noschinski Date: 18.12.2012
Hand-In: 25.12.2012, 23:50

Goals Manipulate lists on the heap and use ghost variables.

Exercise 1 [3] Prepend a List Node

The cons operation (insert a new element at the beginning of a list) is easy to implement on the heap.
One just needs to set the next-pointer of the new node to the begin of the existing list. Moreover, the
old list stays unchanged, which makes this operation so useful for functional languages.

pre: ”list node-alloc node-next p XS NULL ∧ node-alloc q”
post: ”list node-alloc node-next q (q # XS) NULL ∧

list node-alloc node-next p XS NULL”
{*

q→next = p;
*}

Unfortunately, the given pre-condition is to weak. Insert the necessary additional assumptions and
prove the correctness. (Have a look at the “Cheat Sheet” from the lecture).

Exercise 2 [4] Test for an Element

The following program tests whether the value v is contained in the list p. Prove the program correct.
For this, annotate the program with ghost variables, so you do not have to provide witnesses for
existential quantifiers manually.

pre: ”list node-alloc node-next p XS NULL ∧ DS = list-data node-data XS”
post: ”r 6= 0 ↔ v ∈ set DS”
{*

r = 0;
/*@ True */
while (p != null && r == 0) {

if (p→data == v) {
r = 1;

}
p = p→next;
}

*}

Exercise 3 [5] Insert an Element (Hard)

Verify the following code which inserts a node q at the position pos of the list p and returns the
modified list in r.

if (pos == 0) {
q->next = p;
r = q;

} else {
r = p;
prev = p;
p = p-> next;
pos = pos - 1;
while (0 < pos) {
prev = p;
p = p-> next;



Interactive Software Verification SS 2013
htts://www21.in.tum.de/teaching/isv/SS13

SHEET 8
List Manipulations

(Page 2 / 2)

H. Gast, L. Noschinski Date: 18.12.2012
Hand-In: 25.12.2012, 23:50

pos = pos - 1;
}
prev->next = q;
q->next = p;

}


