Interactive Software Verification SS 2013
htts://www2l.in.tum.de/teaching/isv/SS13

H. Gast, L. Noschinski SHEET 8§ Date: 18.12.2012
(Page 1/2)

Goals Manipulate lists on the heap and use ghost variables.

Exercise 1 [3] Prepend a List Node

The cons operation (insert a new element at the beginning of a list) is easy to implement on the heap.
One just needs to set the next-pointer of the new node to the begin of the existing list. Moreover, the
old list stays unchanged, which makes this operation so useful for functional languages.

pre: "list node-alloc node-next p XS NULL A node-alloc g”
post: "list node-alloc node-next q (q # XS) NULL A

list node-alloc node-next p XS NULL”
{*

g—next = p;
"}
Unfortunately, the given pre-condition is to weak. Insert the necessary additional assumptions and
prove the correctness. (Have a look at the “Cheat Sheet” from the lecture).

Exercise 2 [4] Test for an Element

The following program tests whether the value v is contained in the list p. Prove the program correct.
For this, annotate the program with ghost variables, so you do not have to provide witnesses for
existential quantifiers manually.

pre: “list node-alloc node-next p XS NULL A DS = list-data node-data XS”
post: 'r # 0 <> v € set DS”

{
r=0;
/@ True */
while (p != null && r == 0) {
if (p—data == v) {
r=1;
}
p = p— next;
}
"}

Exercise 3 [5] Insert an Element (Hard)

Verify the following code which inserts a node g at the position pos of the list p and returns the
modified list in r.

if (pos == 0) {
g->next = p;
r=q
} else {
r =p;
prev = p;
P = p—> next;
pos = pos - 1;
while (0 < pos) {
prev = p;
p = p—> next;




Interactive Software Verification SS 2013
htts://www2l.in.tum.de/teaching/isv/SS13

H. Gast, L. Noschinski SHEET 8§ Date: 18.12.2012
(Page 2/2)

pos = pos - 1;
}
prev->next = qj
g->next = p;

}




