Interactive Software Verification

Spring Term 2013

Holger Gast
gasth@in.tum.de

28.05.2013

1 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

m Recap: The Big Picture

Correctness of Programs

Solve verification conditions
Arguments about application domain

Hoare Logic

Verification rules for language constructs
Generator for verification conditions

Semantics

Define meaning of programs
Describe behaviour of programs

2 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

L Recap: The Plan

| translate : pass to generate | \V/er Ification
ClJaval... — >[S|mpl 222 VeG PES -
: : Conditions
based on take into account
outside Isabelle [Semantlcs} ____________

not formal,
not checked

3 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

m Recap: The Semantics of Simpl

e Distinguish between different execution modes/outcomes
datatype xstate = Normal state | Abrupt state | Fault | Stuck

e Execution as inductively defined predicate

inductive exec::"” [body,com, xstate,xstate] = bool” ("- (-,-) = -"

e Example: sequence

| T'+{(c;,Normals) = s’;
['H(cy,s")y =t
| = I'-(Seqc; c,;,Normals) =t

e Basic: shallow embedding of state updates
't (Basicf,Normals) = Normal (fs)

e Conditional

[s€b; I'(c;,Normals) = t] = TI'F(Condbc,c,,Normals) =t
[s¢b; I'{(c,,Normals) = t] = I'(Condbc; c,,Normals) = t

4 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

L Today

e Today: the VCG of Simpl

e Definition of “correctness of programs”
e Relationship between correctness and semantics
e A Hoare logic for Simpl

e Based on [4]

e Material taken from [5] & simplified

5 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

Constructing the VCG

6 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

Tm Idea of “correctness”

e Goal: Prove statements about a program’s behaviour

Proof
P » Q
A A
. &
@ Execution >@

e P and () are predicates on states

e Reasoning pattern
e Check that P holds for s & start the program

e Conclude that @) holds for s’
e Interpret content of s’ as desired value described by)

7 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

L Formulating Correctness

e Assertion: statement about states <> a set of states

type-synonym 'sassn =""sset"

e Construct (Hoare-) triple with precondition & postcondition

{Pysmi@Q}

e For Simpl need quadruple:

e xstate enables different types of outcomes
e Stuck / Fault: internal execution error
e Normal / Abrupt: termination of program
= Alternative postcondition for abrupt termination

8 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

m A Simple Example in Simpl

lemma(in ex) simple-assign:
"TH{ x>0AN"y>0} z:=="x+"y{ z>0}"

e Notes
e I' is formally necessary context of procedure definition
e Braces are \<lbrace> and \<rbrace>; in jEdit they
look like bold curly braces; type lbrace/rbrace and
autocomplete.
e apply vcg yields proof obligation
Axy. [0<x0<y] =0<x+y
e If we prove this (by simp), the program is correct.

9 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

T A Few Remarks on Notation

e Already seen: s € P instead of predicate P s

e The image of a set under a function (wite as backiick)
f*A={y. IxeA.y=Ffx}

= Can help hiding an existential

e Application: “the normal states satisfying P”
(s € Normal ‘P) <— (dn.s=Normaln A n € P)

e Take the desired states P
e Lift them into xstate as Normal states
e Check that s is in that set

10 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

i Defining Partial Correctness

e Definition correctness

I'=PcQA=
Vst. s€ Normal ‘P — T'(c,s) =t — t € Normal ' QU Abrupt ‘A

e Partial correctness
e If execution starts in a Normal state s
e In which the precondition P holds

e And if execution terminates
e Then no error has occurred (Fault/Stuck)

e And
e Postcondition () holds in case of normal termination
e Postcondition A holds in case of abrupt termination

11 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

m What is “partial” here?

e “Partial” as in “partial function”

e |f execution does not terminate, it yields not result
e We cannot make a statement about the result

— Consider statements as partial functions to result state

e \We have no assertions about

e Whether the program terminates
e The program’'s behaviour if non-terminating
e Intermediate states of the execution

= Partial correctness may not be “safe enough” (g for embedded contolers)

12 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

m Hoare Logic

e Correctness is a semantic notion, based on execution & states
e Goal: reason about the source code, not the semantics

e |dea: have independent rules for this reasoning
e Idea by Hoare [3], Floyd [2], Dijkstra [1]

e |n Isabelle: another inductively-defined relation
I''OFPCcQA

® NOte Dlﬂ:el’ent Sym bOl (from logic: provability vs. validity)
e P, (), A have same intended meaning
e Defined along structure of ¢ » proof by rule application

13 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

Tum Soundness of the Hoare Logic

e Essential: connect Hoare Logic to correctness

e Reason within Hoare logic
= Derive relation pre-/postcondition
e Conclude that this relation holds for the actual execution

e The Hoare logic is sound if this reasoning is justified
[OFPcQA = T OEPcQA

e If we can prove that c obeys the pre-/postcondition relation
(according to the definition of the Hoare logic)
e Then its execution actually does obey this relation

(according to the definition of correctness)

e Prove soundness in Isabelle to be really sure

14 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

T Structural Rules

e Hoare Rules: (a) for program constructs, (b) about triples

e Assertion P is stronger than P’ iff for any state s we have
Ps — P's

e Symmetrically: weaker assertions
e Strengthening the pre-condition
{P'}c{Q} P = P
{P}el@}
e \Weakening the post-condition
{Pic{@} @ = @
{P}tci@}

@ Note: the Simpl consequence rules subsumes those but is more complex since it has to treat auxiliary variables.

15 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

Tum Hoare Rule for Skip

e Skip does nothing
[I'OF QSkipQ,A
e Check that sensible: reading in semantics
e |f () already holds before the execution
e Then is holds after the execution
e Alternative: backward reading

e If () is to hold after the execution
e Then it must hold already before

16 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

i Rule for Seq

e Rule for Seq

7,0 Pc,RA:
I'®FRc, QA
| = I',OFP(Seqc;c,) QA

e Check: forward reasoning
e |f P holds before the execution
e And we can prove that R holds after ¢,
e And we can prove that () holds after ¢y
e Then () finally holds

e Backward reasoning
e If () must hold after ¢
e Then R must hold before ¢5
e And P must hold before ¢y, i.e. at the start

17 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

T Conditionals

e Rule for if

[T,0F (PNb)c, QA;
I 0 (PN-b)c, QA
| = I'©FP(Condbc; c,) QA

e Check by semantic reading
e If P A b holds before execution
e And after ¢; we have @), then finally @)
e If P A —b holds before execution
e And after ¢y we have (), then finally @)
e Backward reading
e To have () after the conditional, we must either have
e P Ab before ¢1 or
e P A —b before co

18 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

m The Case of Abrupt Termination

e Skip justifies any assertion A (since it never terminates abruptly)
I'OF QSkipQ,A

e Seq justifies A if both ¢; and ¢ justify it
[T,0F Pc, RA;
['OFRc, QA
| = I',6FP(Seqc,c,) QA
e |f ¢c; terminates with an exception, it must guarantee A
e |f c5 termiantes with an exception, it must guarantee A

e Same reasoning for Cond

19 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

i State Updates

e Hoare's classical assignment axiom
{Qle/z] }r:=e{Q}

e Use backward reading

e If () is to hold after the assignment, possibly making an
assertion about x, then
e () must already “hold for ¢" before the assignment

e Alternative: () must hold if we set x directly to the value e

(rather than waiting for the assignment to happen)

e Note: Rule yields pre-condition for the post-condition
— Hoare rules are applied backwards to obtain VCs

= Different formulation weakest preconditions [1]

20 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

L Examples: Assignment Axiom

e Show {y>0}tz:=y{z >0}
e By (assign): { (x> 0)ly/z] }x:=y{x>0}
e So: {y>0}tx:=y{x>0}

e Show{zxz>0Ay>0}z:=o+y{2>0}

e Strengthen: { 7P }z:=ax4+y{2>0}A
(x>0Ay >0 = 7P)

o Assign: set 7P = (z>0)[(x+y)/2] = z4+y >0

= Provex >0ANy>0 — x+y >0

— Remove program constructs, prove implications instead

21 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

T The Rule for Basic

e Simpl uses shallow embedding for state updates

e The rule is very short
[',OF {s.fs€ Q} (Basicf) Q,A

e Use backward reading

e If () is to hold after the state update via f
e Then obviously it must hold in f s

e Since Basic never terminates abruptly, any A is justified.

22 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

T The Rule for While

e Problem: body can be executed many times

e Classical rule with invariant 1
P = 1

{INt}b{I}
IN—t = (@
{ P} while(t)b{Q}
e Invarint must hold before execution
e After succesful test, the body must preserve the invariant
e In the end, invariant 4+ failed test must imply postcondition
e What is the invariant 17

e Describe intermediate states during iteration
e Final state is special case of invariant

23 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

T Simpl’s While Rule

e [he raw While statement has no invariant 9 rule is

'Ok (PNb)cPA
— T',0F P (Whilebc) (P N-b),A

e Set P=1
e Use P A —b for postcondition

e Introduce “hole” for I into abstract syntax
whileAnnoblc=Whilebc

e And derive a rule for the new constant
[PCI;
T, 0F (INb)clA:
|N-bC Q
| =T,0F P (whileAnnoblc)Q,A

24 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

i Dealing with Abrupt Termination

e Throw causes abrupt termination
['©OF AThrowQ,A
e If A must hold after abrupt termination
e Then it must already have held before Throw
e Any (is ok, because Throw never terminates normally

e Catch finishes abrupt execution

[T,0FPc, QR;
I'©FRc, QA
| = T',©F PCatchc,;c, QA

If c; terminates abruptly with state in R,

Then co must guarantee normal postcondition ()
If c; terminates normally, it must guarantee ()

If co terminates abruptly, it must guarantee A

25 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

T The VCG

e Take the input triple { P } sm { @ } from the lemma
e Strengthen precondition to have variable 7P in triple
e Repeatedly apply Hoare rules to fill variable to ()’

— Have pure implication P — (@’

e Prove this implication to prove the program correct

26 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

T A Word on Procedures

e Want to separate implementation and specification
— For each procedure p prove a theorem p_spec
e The VCG will look up the theorem by naming conventions

® Example MUlt'pl'CatK)n by add|t|on (notation: input/output variables)

procedures
mult (a::nat, b:: nat|s::nat)
wherei::natin”. . . "

e Prove specification
lemma (in mult-impl) mult-spec:
"VAB.T'H{a=AA 'b=B} "s:==PROCmult(’a, 'b) { 's=A*B}"

e Used by VCG in verifying calls, e.g.

procedures square(x:: nat|y::nat)” 'y :== CALL mult("x, 'x)"

27 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

Tm Recursive Procedures

e Recursion: cannot prove correctness spec-lemma beforehand

e Idea: provide their specifications as relation ©

Cannot use map p — (P, Q, A), this this prohibits logical variables, see discussion in [4, §3.1.1]

e Definition: partial correctness with context

[OEPcQA=
(V(P,p.QA)eO®.TEP(Callp)QA) — T =PcQ,A

e Assuming that all specifications
® .. . Jdre aCtua”y Obeyed (i.e. all calls are “correct”)
e Then the given statement must be partially correct

= In verifying a call, we can assume its specification from ©

28 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

T Done!

apply Hoare rules

translate pass to generate | \Ver Ification
Sm I
Cliaval... [*F**4Simp —@—’ Conditions

1

: based on ! :
: take into account

Semantics|-----------
[} soundness theorem

outside 7sabelle
not formal,

not checked

29 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

TUTI

References

[1] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM, 18:453-457,
August 1975.

[2] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor, Mathematical Aspects of Computer Science,
volume 19 of Proceedings of Symposia in Applied Mathematics, pages 19-32, Providence, Rhode Island, 1967. American
Mathematical Society.

[3] C.A.R Hoare. An Axiomatic Basis for Computer Programming. Communications of the ACM, 12(10):576-580,583, October
1969.

[4] Norbert Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL. PhD thesis, Technische Universitat
Miinchen, 2005.

[5] Norbert Schirmer. A sequential imperative programming language syntax, semantics, hoare logics and verification environment.
In Gerwin Klein, Tobias Nipkow, and Lawrence Paulson, editors, The Archive of Formal Proofs. http://afp.sourceforge.
net/entries/Simpl.shtml, February 2008. Formal proof development.

30 — H.Gast gasth@in.tum.de Interactive Software Verification, 28.05.2013

http://afp.sourceforge.net/entries/Simpl.shtml
http://afp.sourceforge.net/entries/Simpl.shtml
gasth@in.tum.de
gasth@in.tum.de
gasth@in.tum.de

