

Interactive Software Verification

Spring Term 2013

Holger Gast

gasth@in.tum.de

28.05.2013

Recap: The Big Picture

Correctness of Programs

Solve verification conditions
Arguments about application domain

Hoare Logic

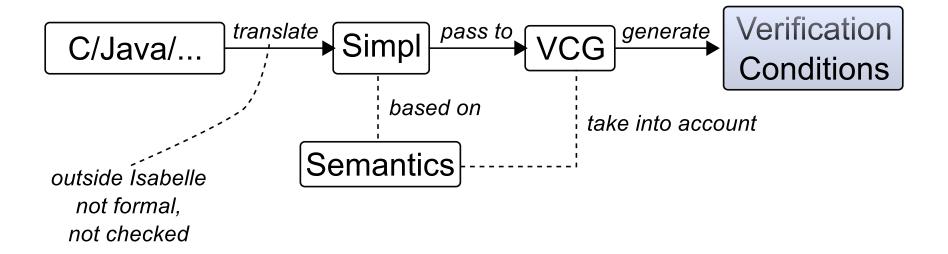
Verification rules for language constructs Generator for verification conditions

Semantics

Define meaning of programs

Describe behaviour of programs

Recap: The Plan



Recap: The Semantics of Simpl

- Distinguish between different execution modes/outcomes
 datatype xstate = Normal state | Abrupt state | Fault | Stuck
- Execution as inductively defined predicate
 inductive exec: "[body,com,xstate,xstate] ⇒ bool" ("-⊢ ⟨-,-⟩ ⇒ -" ···)
- Example: sequence

- Basic: shallow embedding of state updates $\Gamma \vdash \langle \mathsf{Basicf}, \mathsf{Normals} \rangle \Rightarrow \mathsf{Normal(fs)}$
- Conditional

```
[\![s \in b; \ \Gamma \vdash \langle c_1, \mathsf{Normals} \rangle \Rightarrow t ]\!] \implies \Gamma \vdash \langle \mathsf{Cond} \, b \, c_1 \, c_2, \mathsf{Normals} \rangle \Rightarrow t[\![s \notin b; \ \Gamma \vdash \langle c_2, \mathsf{Normals} \rangle \Rightarrow t ]\!] \implies \Gamma \vdash \langle \mathsf{Cond} \, b \, c_1 \, c_2, \mathsf{Normals} \rangle \Rightarrow t
```


Today

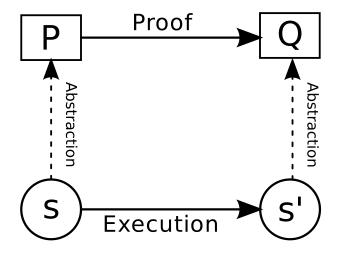
- Today: the VCG of Simpl
 - Definition of "correctness of programs"
 - Relationship between correctness and semantics
 - A Hoare logic for Simpl
- Based on [4]
- Material taken from [5] & simplified

Constructing the VCG

ПЛ

Idea of "correctness"

Goal: Prove statements about a program's behaviour



- P and Q are predicates on states
- Reasoning pattern
 - ullet Check that P holds for s & start the program
 - ullet Conclude that Q holds for s'
 - Interpret content of s' as desired value described by Q

Formulating Correctness

- Assertion: statement about states ↔ a set of states
 type-synonym's assn="'s set"
- Construct (Hoare-) triple with precondition & postcondition $\{\ P\ \}\ sm\ \{\ Q\ \}$
- For Simpl need quadruple:
 - xstate enables different types of outcomes
 - Stuck / Fault: internal execution error
 - Normal / Abrupt: termination of program
 - ⇒ Alternative postcondition for abrupt termination

A Simple Example in Simpl

- Notes
 - ullet Γ is formally necessary context of procedure definition
 - Braces are \<lbrace> and \<rbrace>; in jEdit they look like bold curly braces; type lbrace/rbrace and autocomplete.
- apply vcg yields proof obligation

$$\bigwedge x y$$
. $\llbracket 0 < x; 0 < y \rrbracket \Longrightarrow 0 < x + y$

If we prove this (by simp), the program is correct.

A Few Remarks on Notation

- Already seen: $s \in P$ instead of predicate P s
- The image of a set under a function (write as backtick) $f'A = \{y. \exists x \in A. y = fx\}$
- → Can help hiding an existential
 - Application: "the normal states satisfying P" $(s \in Normal \, P) \longleftrightarrow (\exists \, n. \, s = Normal \, n \land n \in P)$
 - Take the desired states P
 - Lift them into xstate as Normal states
 - Check that s is in that set

Defining Partial Correctness

Definition correctness

$$\Gamma \models PcQ,A \equiv \forall st. s \in Normal 'P \longrightarrow \Gamma \vdash \langle c,s \rangle \Rightarrow t \longrightarrow t \in Normal 'Q \cup Abrupt 'A$$

- Partial correctness
 - If execution starts in a Normal state s
 - In which the precondition P holds
 - And if execution terminates
 - Then no error has occurred (Fault/Stuck)
 - And
 - Postcondition Q holds in case of normal termination
 - ullet Postcondition A holds in case of abrupt termination

What is "partial" here?

- "Partial" as in "partial function"
 - If execution does not terminate, it yields not result
 - We cannot make a statement about the result
- → Consider statements as partial functions to result state
 - We have no assertions about
 - Whether the program terminates
 - The program's behaviour if non-terminating
 - Intermediate states of the execution
- ⇒ Partial correctness may not be "safe enough" (e.g. for embedded contollers)

Hoare Logic

- Correctness is a semantic notion, based on execution & states
- Goal: reason about the source code, not the semantics
- Idea: have independent rules for this reasoning
- Idea by Hoare [3], Floyd [2], Dijkstra [1]
- In Isabelle: another inductively-defined relation
 Γ,Θ⊢PcQ,A
 - Note: Different symbol (from logic: provability vs. validity)
 - P, Q, A have same intended meaning
 - Defined along structure of $c \Rightarrow$ proof by rule application

Soundness of the Hoare Logic

- Essential: connect Hoare Logic to correctness
 - Reason within Hoare logic
 - ⇒ Derive relation pre-/postcondition
 - Conclude that this relation holds for the actual execution
- The Hoare logic is sound if this reasoning is justified

$$\Gamma,\Theta \vdash PcQ,A \implies \Gamma,\Theta \models PcQ,A$$

- If we can prove that c obeys the pre-/postcondition relation (according to the definition of the Hoare logic)
- Then its execution actually does obey this relation (according to the definition of correctness)
- Prove soundness in Isabelle to be really sure

ТШ

Structural Rules

- Hoare Rules: (a) for program constructs, (b) about triples
- Assertion P is stronger than P' iff for any state s we have $Ps \implies P's$
- Symmetrically: weaker assertions
- Strengthening the pre-condition

$$\frac{\{ P' \} c \{ Q \} \quad P \Longrightarrow P'}{\{ P \} c \{ Q \}}$$

Weakening the post-condition

$$\frac{\{P\}c\{Q'\} \quad Q' \Longrightarrow Q}{\{P\}c\{Q\}}$$

• Note: the Simpl consequence rules subsumes those but is more complex since it has to treat auxiliary variables.

Hoare Rule for Skip

- Skip does nothing
 Γ,Θ⊢ Q Skip Q,A
- Check that sensible: reading in semantics
 - If Q already holds before the execution
 - Then is holds after the execution
- Alternative: backward reading
 - If Q is to hold after the execution
 - Then it must hold already before

Rule for Seq

Rule for Seq

```
  \begin{bmatrix}
    \Gamma,\Theta \vdash P c_1 R,A; \\
    \Gamma,\Theta \vdash R c_2 Q,A \\
    \end{bmatrix} \Longrightarrow \Gamma,\Theta \vdash P (Seq c_1 c_2) Q,A
```

- Check: forward reasoning
 - If P holds before the execution
 - ullet And we can prove that R holds after c_1
 - ullet And we can prove that Q holds after c_2
 - Then Q finally holds
- Backward reasoning
 - ullet If Q must hold after c_2
 - Then R must hold before c_2
 - And P must hold before c_1 , i.e. at the start

Conditionals

• Rule for if

$$\begin{bmatrix}
 \Gamma,\Theta \vdash (P \cap b) c_1 Q,A; \\
 \Gamma,\Theta \vdash (P \cap b) c_2 Q,A
 \end{bmatrix}
 \Longrightarrow \Gamma,\Theta \vdash P (Cond b c_1 c_2) Q,A$$

- Check by semantic reading
 - If $P \wedge b$ holds before execution
 - And after c_1 we have Q, then finally Q
 - If $P \wedge \neg b$ holds before execution
 - And after c_2 we have Q, then finally Q
- Backward reading
 - To have Q after the conditional, we must either have
 - $P \wedge b$ before c_1 or
 - $P \wedge \neg b$ before c_2

ТИП

The Case of Abrupt Termination

- Skip justifies any assertion A (since it never terminates abruptly) $\Gamma,\Theta \vdash \mathsf{QSkip}\,\mathsf{Q},\mathsf{A}$
- ullet Seq justifies A if both c_1 and c_2 justify it

$$\begin{bmatrix}
 \Gamma,\Theta \vdash P c_1 R,A; \\
 \Gamma,\Theta \vdash R c_2 Q,A \\
 \end{bmatrix} \Longrightarrow \Gamma,\Theta \vdash P(Seq c_1 c_2) Q,A$$

- If c_1 terminates with an exception, it must guarantee A
- If c_2 termiantes with an exception, it must guarantee A
- Same reasoning for Cond

State Updates

Hoare's classical assignment axiom

$$\{ Q[e/x] \} x := e \{ Q \}$$

- Use backward reading
 - If Q is to hold after the assignment, possibly making an assertion about x, then
 - ullet Q must already "hold for e" before the assignment
- Alternative: Q must hold if we set x directly to the value e (rather than waiting for the assignment to happen)
- Note: Rule yields pre-condition for the post-condition
- → Hoare rules are applied backwards to obtain VCs
- → Different formulation weakest preconditions [1]

Examples: Assignment Axiom

- Show $\{ y > 0 \} x := y \{ x > 0 \}$
 - By (assign): $\{(x > 0)[y/x]\} x := y \{x > 0\}$
 - So: $\{y > 0\} x := y \{x > 0\}$
- Show $\{x > 0 \land y > 0\}\ z := x + y \{z > 0\}$
 - Strengthen: $\{?P\} z := x + y \{z > 0\} \land (x > 0 \land y > 0 \Longrightarrow ?P)$
 - Assign: set ?P = (z > 0)[(x + y)/z] = x + y > 0
 - \Rightarrow Prove $x > 0 \land y > 0 \implies x + y > 0$
- ⇒ Remove program constructs, prove implications instead

The Rule for Basic

- Simpl uses shallow embedding for state updates
- The rule is very short
 Γ,Θ⊢ {s. fs ∈ Q} (Basic f) Q,A
- Use backward reading
 - If Q is to hold after the state update via f
 - ullet Then obviously it must hold in $f\ s$
- Since Basic never terminates abruptly, any A is justified.

The Rule for While

- Problem: body can be executed many times
- Classical rule with invariant I

$$P \Longrightarrow I \\ \{I \land t \} b \{I \} \\ I \land \neg t \Longrightarrow Q \\ \hline \{P \} \text{ while } (t) b \{Q \}$$

- Invarint must hold before execution
- After successful test, the body must preserve the invariant
- In the end, invariant + failed test must imply postcondition
- What is the invariant *I*?
 - Describe intermediate states during iteration
 - Final state is special case of invariant

Simpl's While Rule

The raw While statement has no invariant ⇒ rule is

$$\Gamma,\Theta \vdash (P \cap b) c P,A$$

 $\Longrightarrow \Gamma,\Theta \vdash P (While b c) (P \cap - b),A$

- Set P = I
- Use $P \wedge \neg b$ for postcondition
- Introduce "hole" for I into abstract syntax while Annoble = While bc
- And derive a rule for the new constant

Dealing with Abrupt Termination

Throw causes abrupt termination

$$\Gamma$$
, Θ \vdash A Throw Q,A

- If A must hold after abrupt termination
- Then it must already have held before Throw
- ullet Any Q is ok, because Throw never terminates normally
- Catch finishes abrupt execution

```
  \begin{bmatrix}
    \Gamma,\Theta \vdash P c_1 Q,R; \\
    \Gamma,\Theta \vdash R c_2 Q,A
  \end{bmatrix}
  \Longrightarrow \Gamma,\Theta \vdash P Catch c_1 c_2 Q,A
```

- If c_1 terminates abruptly with state in R,
- Then c_2 must guarantee normal postcondition Q
- ullet If c_1 terminates normally, it must guarantee Q
- If c_2 terminates abruptly, it must guarantee A

ТИП

The VCG

- ullet Take the input triple $\{\ P\ \}\ sm\ \{\ Q\ \}$ from the lemma
- ullet Strengthen precondition to have variable ?P in triple
- ullet Repeatedly apply Hoare rules to fill variable to Q'
- \Rightarrow Have pure implication $P \implies Q'$
 - Prove this implication to prove the program correct

A Word on Procedures

- Want to separate implementation and specification
- \Rightarrow For each procedure p prove a theorem p_spec
 - The VCG will look up the theorem by naming conventions
 - Example: Multiplication by addition (notation: input/output variables)

procedures mult (a::nat, b::nat|s::nat) where i::nat in"..."

Prove specification

```
lemma (in mult-impl) mult-spec: "\forall AB. \Gamma \vdash \{ (a = A \land (b = B)) (s :== PROC mult((a, (b))) \} (s = A * B) "
```

Used by VCG in verifying calls, e.g.

```
procedures square(x::nat|y::nat)" 'y :== CALL mult('x, 'x)"
```

Recursive Procedures

- Recursion: cannot prove correctness spec-lemma beforehand
- ullet Idea: provide their specifications as relation Θ

Cannot use map $p \mapsto (P, Q, A)$, this this prohibits logical variables, see discussion in [4, §3.1.1]

Definition: partial correctness with context

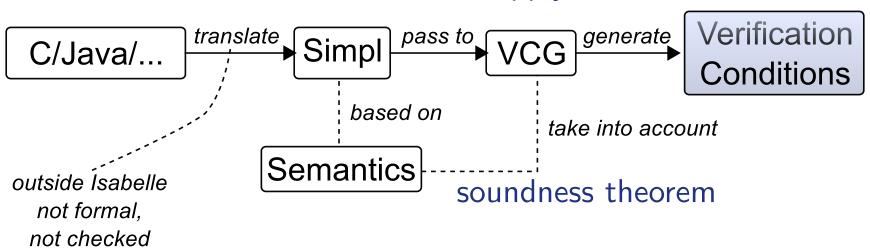
$$\Gamma,\Theta \models PcQ,A \equiv$$

 $(\forall (P,p,Q,A) \in \Theta. \Gamma \models P(Call p)Q,A) \longrightarrow \Gamma \models PcQ,A$

- Assuming that all specifications
- . . . are actually obeyed (i.e. all calls are "correct")
- Then the given statement must be partially correct
- \Rightarrow In verifying a call, we can assume its specification from Θ

Done!

apply Hoare rules



References

- [1] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. *Commun. ACM*, 18:453–457, August 1975.
- [2] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor, *Mathematical Aspects of Computer Science*, volume 19 of *Proceedings of Symposia in Applied Mathematics*, pages 19–32, Providence, Rhode Island, 1967. American Mathematical Society.
- [3] C.A.R Hoare. An Axiomatic Basis for Computer Programming. *Communications of the ACM*, 12(10):576–580,583, October 1969.
- [4] Norbert Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL. PhD thesis, Technische Universität München, 2005.
- [5] Norbert Schirmer. A sequential imperative programming language syntax, semantics, hoare logics and verification environment. In Gerwin Klein, Tobias Nipkow, and Lawrence Paulson, editors, *The Archive of Formal Proofs*. http://afp.sourceforge.net/entries/Simpl.shtml, February 2008. Formal proof development.