
Technische Universität München Lambda Calculus
Institut für Informatik Winter Term 2017/18
Prof. Tobias Nipkow, Ph.D. Exercise Sheet 3
Simon Wimmer

Exercise 1 (Fixed-point Combinator)

• Use a fixed-point combinator to compute the length of lists on the encoding given in
the last tutorial.

• Find an easier solution for the encoding from the last homework.

Exercise 2 (β-reduction on de Bruijn Preserves Substitution)

We consider an alternative representation of λ-terms that is due to de Bruijn. In this
representation, λ-terms are defined according to the following grammar:

d ::= i ∈ N | d1 d2 | λ d

Define substitution and β-reduction on de Bruijn terms.

Now restate Lemma 1.2.5 for de Bruijn terms and prove it:

s→β s
′ =⇒ s[u/x]→β s

′[u/x]

Homework 3 (Multiplication)

Define multiplication using fix and prove its correctness. You can assume that you are
given a predecessor function pred such that:

• pred 0→∗β 0

• pred (succ n)→∗β n

Homework 4 (Efficient Substitution on de Bruijn)

We define a new lifting operator − ↑−−:

i ↑nl =

{
i, if i < l

i+ n, if i ≥ l

(d1 d2) ↑nl = d1 ↑nl d2 ↑nl
(λ d) ↑nl = λ d ↑nl+1

Use − ↑−− to define a more efficient version of substitution for de Bruijn terms that only
applies lifting in the case that a variable is actually replaced by a term. Prove that t[s/0]
yields the same result for both, your new version and the version from the tutorial. Hint :
Find a suitable generalization first.

1

Homework 5 (Expanding Lets)

We have a language with let-expressions, i.e.:

t = v | t t | let v = t in t

Write a program which expands all let-expressions. The let-semantics are:

(let v = t1 in t2) = (λv. t2) t1

If you want to use a language different from ML, Ocaml, Haskell, Java, and Python, please
talk to the tutor first.

2

