Exercise 1 (Confluence of β-Reduction)

In the lecture we have shown the confluence of \rightarrow_{β} using the diamond property of parallel β-reduction. In this exercise, we develop an alternative proof.

We define the operation \ast on λ-terms inductively over the structure of terms:

\[
\begin{align*}
x^\ast &= x \\
(\lambda x. t)^\ast &= \lambda x. t^\ast \\
(t_1 t_2)^\ast &= t_1^\ast t_2^\ast \quad \text{if } t_1 t_2 \text{ is not a β-redex.} \\
((\lambda x. t_1) t_2)^\ast &= t_1^\ast[t_2^\ast/x]
\end{align*}
\]

a) Show that we have for two arbitrary λ-terms s and t: $s \tr\beta t \Rightarrow t \tr s^\ast$

b) Show that \rightarrow_{β} is confluent.

Exercise 2 (Parallel Beta Reduction)

Show:

\[s \tr\beta t \Rightarrow s \tr^\ast_{\beta} t \]

Exercise 3 (Predecessor and Tail)

a) Define a predecessor function pred on church numerals.

b) Use the same idea to define tl on the list encoding from homework 2.5.
Homework 4 (Parallel Beta Reduction & Substitution)

Show:
\[s > s' \land t > t' \implies s[t/x] > s'[t'/x] \]

Homework 5 (Equivalence modulo β-conversion)

Assume that we add the additional axiom
\[\lambda x. y. x =_\beta \lambda x. y \]

a) Show that under this assumption $t =_\beta t'$ for all t, t'.

b) Repeat the same for the axiom $\lambda x. y =_\beta \lambda x. y x$.

Homework 6 (Böhm’s Theorem)

Böhm’s Theorem states that for arbitrary closed terms $M \neq N$ without constant atoms in $\beta\eta$-normal form, there exist $n \geq 0$ and L_1, \ldots, L_n such that:

\[M L_1 \ldots L_n x y \rightarrow^* x \text{ and } N L_1 \ldots L_n x y \rightarrow^*_\beta y. \]

That is, we can tell M and N apart. Show the following two special cases:

a) $M = \lambda x. y z. x z (y z)$ and $N = \lambda x. y z. x (y z)$

b) $M = \lambda x. y. x (y y)$ and $N = \lambda x. y. x (y x)$