Exercise 1 (Fixed-point Combinator)

- Use a fixed-point combinator to compute the length of lists on the encoding given in the last tutorial.
- Find an easier solution for the encoding from the last homework.

Solution

- We use the Y-combinator:
 \[y := \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]

 The Y-combinator satisfies the property \(y f =^\beta f (y f) \).

 Recall how the Church numerals are implemented:
 \[
 \text{zero} := \lambda f x. x \\
 \text{succ} := \lambda n f x. f (n x)
 \]

 In a programming language with recursion, length would be implemented as follows:
 \[
 \text{len } x = \text{if null } x \text{ then } 0 \text{ else Succ (len (tl } x))
 \]

 We obtain the following definition:
 \[
 \text{length} := y (\lambda l x. (\text{null } x) \text{ zero (succ (l (tl } x))))
 \]

- \(\text{length} := \lambda l. l (\lambda x. \text{succ}) 0 \)

Exercise 2 (\(\beta \)-reduction on de Bruijn Preserves Substitution)

We consider an alternative representation of \(\lambda \)-terms that is due to de Bruijn. In this representation, \(\lambda \)-terms are defined according to the following grammar:

\[
d ::= i \in \mathbb{N} \mid d_1 \ d_2 \mid \lambda d
\]

Define substitution and \(\beta \)-reduction on de Bruijn terms.

Now restate Lemma 1.2.5 for de Bruijn terms and prove it:

\[
s \rightarrow_\beta s' \implies s[u/x] \rightarrow_\beta s'[u/x]
\]
Solution

\[i \uparrow_t = \begin{cases} i, & \text{if } i < l \\ i + 1, & \text{if } i \geq l \end{cases} \]

\[(d_1 \ d_2) \uparrow_t = d_1 \uparrow_t \ d_2 \uparrow_t \]

\[(\lambda \ d) \uparrow_t = \lambda \ d \uparrow_{t+1} \]

\[i[t/j] = \begin{cases} i & \text{if } i < j \\ t & \text{if } i = j \\ i - 1 & \text{if } i > j \end{cases} \]

\[(d_1 \ d_2)[t/j] = (d_1[t/j]) \ (d_2[t/j]) \]

\[(\lambda d)[t/j] = \lambda (d[t_0/j + 1]) \]

We now have \((\lambda d)e \rightarrow_{\beta} d[e/0]\). The other cases for \(\rightarrow_{\beta}\) remain the same as before. Similarly to the lecture, we first prove the key property (*)

\[i < j + 1 \rightarrow t[v \uparrow_i /j + 1][u[v/j]/i] = t[u/i][v/j] \]

by induction on \(t\). Now

\[s \rightarrow_{\beta} s' \implies s[u/i] \rightarrow_{\beta} s'[u/i] \]

can be proved by induction on \(\rightarrow_{\beta}\) for arbitrary \(u\) and \(i\).

The base case is the hardest. We need to show

\[((\lambda s) \ t)[u/i] \rightarrow_{\beta} s[t/0][u/i] \]

for arbitrary \(s, t\). Proof:

\[
\begin{align*}
((\lambda s) \ t)[u/i] &= (\lambda s[u \uparrow_0 /i + 1]) \ t[u/i] & \text{Def. of substitution} \\
&\rightarrow_{\beta} s[u \uparrow_0 /i + 1][t[u/i]/0] \\
&= s[t/0][u/i] & (*)
\end{align*}
\]

The other cases follow trivially from the rules of \(\rightarrow_{\beta}\) and the definition of substitution.
Homework 3 (Multiplication)

Define multiplication using fix and prove its correctness. You can assume that you are given a predecessor function pred such that:

- \(\text{pred} \ 0 \rightarrow^* 0 \)
- \(\text{pred} \ (\text{succ} \ n) \rightarrow^* n \)

Homework 4 (Efficient Substitution on de Bruijn)

We define a new lifting operator \(\uparrow^n \):

\[
\begin{align*}
i \uparrow^n_l &= \begin{cases} i, & \text{if } i < l \\ i + n, & \text{if } i \geq l \end{cases} \\
(d_1 \ d_2) \uparrow^n_l &= d_1 \uparrow^n_l \ d_2 \uparrow^n_l \\
(\lambda \ d) \uparrow^n_l &= \lambda \ (d \uparrow^{n+1}_l)
\end{align*}
\]

Use \(\uparrow^n \) to define a more efficient version of substitution for de Bruijn terms that only applies lifting in the case that a variable is actually replaced by a term. Prove that \(t[s/0] \) yields the same result for both, your new version and the version from the tutorial. Hint: Find a suitable generalization first.

Homework 5 (Expanding Lets)

We have a language with let-expressions, i.e.:

\[
t ::= v \mid t \mid \text{let } v = t \text{ in } t
\]

Write a program which expands all let-expressions. The let-semantics are:

\[
(\text{let } v = t_1 \text{ in } t_2) = (\lambda v. t_2) \ t_1
\]

If you want to use a language different from ML, Ocaml, Haskell, Java, and Python, please talk to the tutor first.