Exercise 1 (Reduction Relation with Closures)

For the evaluation of lambda terms that is closer to evaluation of programs in functional programming languages, one usually replaces textual substitution $t[v/x]$ with a more lazy approach that records the binding $x \mapsto v$ in an environment. These bindings are used whenever we need the value of a variable v.

In this approach abstractions $\lambda x. t$ do not evaluate to themselves, but to a pair $(\lambda x. t)[e]$, where e is the current environment. We call such pairs function closures.

a) Define a big-step reduction relation for the lambda calculus with function closures and environments.

b) Add explicit error handling for the case where the binding of a free variable v cannot be found in the environment. Introduce an explicit value `abort` to indicate such an exception in the relation.
Exercise 2 (Better Translation Algorithm)

Give a variant of the translation algorithm that produces shorter terms. More specifically, define a variant of \(\lambda^*x. t \) that analyzes more precisely where \(x \) actually appears in \(t \).
Homework 3 (Proofs with Small-steps and Big-steps)

Let $\omega := \lambda x. x x$ and

\[t := (\lambda x. (\lambda x y. x) z) y (\omega \omega ((\lambda x y. x) y)). \]

Prove the following:

a) $t \Rightarrow_n z$

b) $t \rightarrow^3_{cbv} t$

c) $t \not\Rightarrow^+_{cbn} t$

Homework 4 (More Combinators)

Find combinators O and W such that:

\[O \rightarrow^+ O \]
\[W X Y \rightarrow^* X Y Y \]

Homework 5 (Mocking Birds)

Consider a combinatory logic that only provides the basic combinators B and M (the “mocking bird”) where:

\[B X Y Z \rightarrow^* X (Y Z) \]
\[M X \rightarrow^* X X \]

Prove the following properties of this logic:

a) For every combinator X, there is a combinator Y such that $Y \rightarrow^* X Y$.

b) For all combinators U and W, there exist combinators X and Y such that $Y \rightarrow^* U X$ and $X \rightarrow^* W Y$.

Homework 6 (Correctness of the Translation Algorithm)

Show that the translation algorithm given in the tutorial is correct. That is, show that it fulfills the following property:

\[(\lambda^* x. X) Y \rightarrow^* X[Y/x] \]