Exercise 1 (Progress Property)

Let \(t \) be a closed and well-typed term, i.e. \(\Gamma \vdash t : \tau \) for some \(\tau \). Show that \(t \) is either a value or there is a \(t' \) such that \(t \rightarrow_{cbv} t' \).

Exercise 2 (Normal Form)

Show that every type-correct \(\lambda^\rightarrow \)-term has a \(\beta \)-normal form.
Homework 3 (Typing)

a) Prove:

\[\emptyset \vdash (\lambda x:\tau_2 \to \tau_3. \lambda y:\tau_1 \to \tau_2. \lambda z:\tau_1. \ x \ (y \ z)): (\tau_2 \to \tau_3) \to (\tau_1 \to \tau_2) \to \tau_1 \to \tau_3 \]

b) Give suitable solutions for ?\tau_1, ?\tau_2, ?\tau_3 and ?\tau_4 and prove that the term is type-correct given your solution.

\[\emptyset \vdash \lambda x: ?\tau_1. \ \lambda y: ?\tau_2. \ \lambda z: ?\tau_3. \ x \ y \ (y \ z) : ?\tau_4 \]

Homework 4 (\(\beta\)-reduction preserves types)

A type system has the subject reduction property if evaluating an expression preserves its type. Prove that the simply typed \(\lambda\)-calculus (\(\lambda^\sim\)) has the subject reduction property:

\[\Gamma \vdash t: \tau \land t \rightarrow_\beta t' \implies \Gamma \vdash t': \tau \]

Hints: Use induction over the inductive definition of \(\rightarrow_\beta\) (Def. 1.2.2). State your inductive hypotheses precisely – it may help to introduce a binary predicate \(P(t, t')\) to express the property you are proving by induction. Also note that the proof will require rule inversion: Given \(\Gamma \vdash t: \tau\), the shape of \(t\) (variable, application, or \(\lambda\)-abstraction) may determine which typing rule must have been used to derive the typing judgment.

Within your proof, you are free to use the following lemma about substitution:

\[\Gamma \vdash u: \tau_0 \land \Gamma[x: \tau_0] \vdash t: \tau \implies \Gamma \vdash t[u/x]: \tau \]

Homework 5 (Implementation of multiset-ordering and reduction)

Implement the multiset ordering and the reduction strategy from the second tutorial exercise in your favorite programming language.