Exercise 1 (Example of Type Inference for let)

Consider the typing problem

\[x : \alpha \vdash \text{let } y = \lambda z. z \ x \ \text{in } y \ (\lambda v. \ x) : ?\tau \]

where \(\alpha \) is a type variable.

a) Find the most general type schema \(\sigma \) with \(x : \alpha \vdash \lambda z. z \ x : \sigma \) and draw a type derivation tree.

b) Draw the type derivation tree for

\[x : \alpha, y : \sigma \vdash y \ (\lambda v. \ x) : ?\tau \]

with the correct type for \(?\tau \).

Exercise 2 (Recursive let)

Recursive let expressions are one way (besides \(Y \)-combinators) to add recursion to \(\lambda \to \).

\[t ::= x | (t_1 \ t_2) | (\lambda x. \ t) | \text{letrec } x = t_1 \ \text{in } t_2 \]

a) Modify the standard typing rule for \(\text{let} \) to create a suitable rule for \(\text{letrec} \).

b) Considering type inference, what is the problematic property of this rule compared to the rule for \(\text{let} \)?

Exercise 3 (Type Inference in Haskell (2))

Extend the implementation of the type inference algorithm from the last exercise with \(\text{let} \) and \(\text{letrec} \) constructs.
Homework 4 (Fixed-point combinator)

Let
\[S = \lambda abcdefghijklmnopqrstuvwxyzr. r(thisisafixedpointcombinator) \]
and
\[\mathcal{E} = \ldots \]
Show that \(\mathcal{E} \) is a fixed-point combinator.

Homework 5 (let-Polymorphism)

Give a derivation tree for the following statement, and so determine the type \(\tau \):
\[[z: \tau_0] \vdash \text{let } x = \lambda y z. z y y \text{ in } x (x z) : \tau \]

Homework 6 (Towards Syntax-Directed let-Polymorphism)

In the lecture, it was claimed that the systems \(DM \) and \(DM' \), which, in contrast to \(DM \), has explicit rules \(\forall \text{Intro} \) and \(\forall \text{Elim} \), are essentially equivalent. More specifically, it was claimed that
\[\Gamma \vdash_{DM} t : \sigma \Longrightarrow \exists \tau. \quad \Gamma \vdash_{DM'} t : \tau \land \text{gen}(\Gamma, \tau) \preceq \sigma. \]

As a step towards proving this result, we want to rearrangement derivations in \(DM \) such that they resemble derivations in \(DM' \). In particular, prove that

a) Any derivation \(\Gamma \vdash_{DM} t : \sigma \) can be transformed such that \(\forall \text{Elim} \) only occur in a chain below the \(\text{Var} \) rule, i.e.

\[\begin{array}{c}
\vdash_{Var} x : \forall \alpha_1, \ldots, \alpha_n. \tau \\
\vdash_{\forall \text{Elim}} x : \tau \\
\vdash_{\forall \text{Elim}} \vdash x : \tau
\end{array} \]

b) Any derivation \(\Gamma \vdash_{DM} t : \sigma \) can be transformed such that \(\forall \text{Intro} \) only occur in a chain that is terminated by an application of the \(\text{Let} \) rule or by the end of the proof, i.e.

\[\begin{array}{c}
\vdash_{\forall \text{Intro}} \vdash l_1 : \tau \\
\vdash_{\forall \text{Intro}} \vdash l_1 : \forall \alpha_n. \tau \\
\vdash_{\forall \text{Intro}} \vdash l_1 : \forall \alpha_1, \ldots, \alpha_n. \tau \\
\vdash_{\forall \text{Intro}} \vdash l_1 : \forall \alpha_1, \ldots, \alpha_n. \tau \\
\vdash_{\text{Let}} \vdash \text{let } x = l_1 \text{ in } t_2 : \sigma
\end{array} \]
\[\vdash t_1 : \tau \quad \forall \text{Intro} \]
\[\vdash t_1 : \forall \alpha_n. \tau \quad \forall \text{Intro} \]
\[\vdash t_1 : \forall \alpha_1, \ldots, \alpha_n. \tau \quad \forall \text{Intro} \]