
Sam
ple

Solu
tio

n

Logic and Verification
Informatics
Technical University of Munich

Esolution
Place student sticker here

Note:
• During the attendance check a sticker containing a unique code will be put on this exam.
• This code contains a unique number that associates this exam with your registration

number.
• This number is printed both next to the code and to the signature field in the attendance

check list.

Lambda Calculus

Exam: IN2358 / Endterm Date: Wednesday 23rd February, 2022
Examiner: Prof. Tobias Nipkow Time: 08:00 – 09:30

I

P 1 P 2 P 3 P 4 P 5

Working instructions
• This exam consists of 12 pages with a total of 5 problems.

Please make sure now that you received a complete copy of the exam.

• The total amount of achievable credits in this exam is 43 credits. There is one bonus exercises on this
exam which means that the grading scale for 40 credits (instead of 43 credits) will be applied.

• Detaching pages from the exam is prohibited.

• Allowed resources:

– one A4 sheet with hand-written notes on both sides

– one analog dictionary English ↔ native language without annotations

• Subproblems marked by * can be solved without results of previous subproblems.

• Do not write with red or green colors nor use pencils.

• Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from to / Early submission at

– Page 1 / 12 –



Sam
ple

Solu
tio

n

0
1
2
3

0
1
2
3

0
1
2
3

Problem 1 List programming (9 credits)

Recall the fold encoding from the exercise sheet where a list [x, y, z] is represented as λc n. c x (c y (c z n)).
Accordingly, the empty list is defined as nil := λc n. n

a)* Define a function that appends two lists in this encoding, i.e. it should hold that

append (λc n. c x1 (... (c xk n) ...)) (λc n. c y1 (... (c yl n) ...)) →∗
β (λc n. c x1 (... (c xk (c y1 (... (c yl n) ...))) ...)).

append := (λl1 l2. λc n. l1 c (l2 c n))

b)* Implement the append function again using fix.

null := (λl. l (λh t . false) true)

head := (λl. l (λh t . h) false)

append := fix (λf l1 l2. if (null l1) l2 (cons (head l1) (f (tail l1) l2)))

c)* BONUS: Remember that we can prepend an element to a list with cons := (λx l. λc n. c x (l c n)). Define
a function that computes the tail of a list, i.e. it should hold that

tail (cons x l) →∗
β l.

Hint: You might want to use pairs.

tail := (λl. fst (l (λx a. pair (snd a) (cons x (snd a))) (pair nil nil)))

– Page 2 / 12 –



Sam
ple

Solu
tio

n

Problem 2 Confluence (10 credits)

Let →1 ⊆ A × A and →2 ⊆ A × A . Let all variables below range over A . Notation: x →∗
1→∗

2 z means
∃y. x →∗

1 y ∧ y →∗
2 z.

Assume

B: x →∗
1 y ∧ x →2 z ⇒ ∃u. y →∗

2 u ∧ z →∗
1→∗

2 u for all x, y, z

C: →2 is confluent

Prove that x →∗
1 y ∧ x →∗

2 z ⇒ ∃u. y →∗
2 u ∧ z →∗

1→∗
2 u for all x, y, z.

The proof must be given in the standard verbal style. However, it is very helpful to draw a diagram, in
particular as a starting point.

We prove
x →∗

1 y ∧ x →n
2 z ⇒ ∃u. y →∗

2 u ∧ z →∗
1→∗

2 u

for all x, y, z by induction on n.

Base case: If n = 0 then u = y does the job.

Induction step:
Assume ∀x y z. x →∗

1 y ∧ x →n
2 z ⇒ ∃u. y →∗

2 u ∧ z →∗
1→∗

2 u as an induction hypothesis. Furthermore,
assume x →∗

1 y ∧ x →n+1
2 z. Thus there is an x ′ s.t. x →2 x ′ →n

2 z. Using B with x →∗
1 y and x →2 x ′

there is a u′ s.t. y →∗
2 u′ ∧ x ′ →∗

1→∗
2 u′. Thus there is an x ′′ s.t. x ′ →∗

1 x ′′ →∗
2 u′. By IH with x ′ →∗

1 x ′′

and x ′ →n
2 z there is a u′′ s.t. x ′′ →∗

2 u′′ ∧ z →∗
1→∗

2 u′′. By C with x ′′ →∗
2 u′ and x ′′ →∗

2 u′′ there is a u
s.t. u′ →∗

2 u ∧ u′′ →∗
2 u. Thus y →∗

2 u and z →∗
1→∗

2 u.

x x ′ z

IH

B x ′′ u′′

C

y u′ u

2

1∗

2n

1∗ 1∗2∗

2∗

2∗

2∗

2∗ 2∗

x x ′ z

B

IH x ′′ u′′

C

y u′ u

2n

1∗

2

1∗ 1∗2∗

2∗

2∗

2∗

2∗ 2∗

0
1
2
3
4
5
6
7
8
9

10

– Page 3 / 12 –



Sam
ple

Solu
tio

n

0
1
2

0
1
2
3
4
5

Problem 3 Typing Lists (10 credits)

In this exercise, we add a primitive type of lists (and booleans) to the simply typed lambda calculus λ→. The
type bool can be constructed using either of the constants true or false. The corresponding typing rules are
unsurprisingly

Γ ⊢ true : bool and Γ ⊢ false : bool.

For lists we need to add quite a number of constants to the calculus. Similarly to the function abstraction
λx : τ . t where the type τ of x is explicitly annotated, each of the constants takes a type of list elements α as
an argument. We have

• the empty list nil[α],

• the list constructor cons[α] t1 t2 that prepends the term t1 to the list t2,

• the function null[α] t that tests whether the list represented by t is empty,

• the function head[α] t that extracts the head of the list t , and

• the function tail[α] t that returns the tail of the list t .

We define the following β-reduction rules for the list constants:

t1 →β t ′
1

cons[α] t1 t2 →β cons[α] t ′
1 t2

t2 →β t ′
2

cons[α] t1 t2 →β cons[α] t1 t ′
2

null[α] (nil[β]) →β true null[α] (cons[β] t1 t2) →β false

head[α] (cons[β] t1 t2) →β t1 tail[α] (cons[β] t1 t2) →β t2

Answer the following questions:

a)* Three reduction rules are missing; state them.

t1 →β t ′
1

head[α] t1 →β head[α] t ′
1

t1 →β t ′
1

tail[α] t1 →β tail[α] t ′
1

t1 →β t ′
1

null[α] t1 →β null[α] t ′
1

b)* Consider the call-by-value reduction relation →cbv as defined in the lecture. Modify the above rules to
obtain a call-by-value relation →cbv for λ→ with lists.
Note: The rules of part a) need not be modified.

v1 value t2 →cbv t ′
2

cons[α] v1 t2 →cbv cons[α] v1 t ′
2

v1, v2 values
null[α] (cons[β] v1 v2) →cbv false

v1, v2 values
head[α] (cons[β] v1 v2) →cbv v1

v1, v2 values
tail[α] (cons[β] v1 v2) →cbv v2

– Page 4 / 12 –



Sam
ple

Solu
tio

n

Since we are working with λ→, we not only want to evaluate lists but also type them.

c)* We use list α to denote the type of lists with elements of type α. Give the typing rules for the list constants.
Hint: The types of head[α] (nil[α]) and tail[α] (nil[α]) should be α and list α, respectively.

Γ ⊢ nil[α] : list α

Γ ⊢ t1 : α Γ ⊢ t2 : list α

Γ ⊢ cons[α] t1 t2 : list α

Γ ⊢ t : list α

Γ ⊢ null[α] t : bool

Γ ⊢ t : list α

Γ ⊢ head[α] t : α

Γ ⊢ t : list α

Γ ⊢ tail[α] t : list α

0
1
2
3

– Page 5 / 12 –



Sam
ple

Solu
tio

n
0
1
2

0
1
2
3

Problem 4 Type Inference for Let (5 credits)

Consider λ→ extended with let and consider the following the typing problem

x : A ⊢ let y = λz. (z x) in (y (λv. x)) : ?τ

where A is a type variable.

a)* Find a most general type schema σ with x : A ⊢ λz. (z x) : σ. You may, but you do not need to draw a
type derivation tree.

σ = ∀B. (A → B) → B

b) Draw the type derivation tree for
x : A , y : σ ⊢ (y (λv. x)) : ?τ

Of course, with the correct type for ?τ .
Use only the introduction and elimination rules for → and ∀ and the standard assumption rule

Γ ⊢ x : τ where Γ(x) = τ .

Γ ⊢ y : σ

Γ ⊢ y : (A → A ) → A ∀E
Γ, v : A ⊢ x : A
Γ ⊢ λv. x : A → A →I

Γ ⊢ (y (λv. x)) : A →E

– Page 6 / 12 –



Sam
ple

Solu
tio

n

Problem 5 Logic (9 credits)

In this exercise, we consider intuitionistic logic with negation, conjunction, and disjunction, but without
implication. We write Γ ⊢I A to mean that A is provable from Γ in intuitionistic logic. To obtain classical logic,
we add the classical contradiction rule

Γ, ¬A ⊢C ⊥
CCONTR

Γ ⊢C A

where we take Γ ⊢C A to mean that A is provable from Γ in classical logic. Furthermore, we define a function
−∗ that takes formulas to formulas:

⊥∗ = ⊥
p∗ = ¬¬p for atomic p

(¬A )∗ = ¬(A∗)
(A ∧ B)∗ = A∗ ∧ B∗

(A ∨ B)∗ = ¬(¬(A∗) ∧ ¬(B∗))

Fact: It can be shown that A∗ is negative for any formula A . Recall that we call a formula negative if
propositional variables P only occur in negated form ¬P in the formula.

We want to prove that classical logic can be embedded into intuitionistic logic in the sense that Γ ⊢C A =⇒
Γ∗ ⊢I A∗ where Γ∗ means that we apply −∗ pointwise.

Show the statement by induction on the derivation of Γ ⊢C A . You only need to consider the cases where
Γ ⊢C A was proved by the rules CCONTR and ∨I1.

Note: In the homework we proved that if A is negative, Γ ⊢I ¬¬A implies Γ ⊢I A . You may refer to this fact as
(∗).

We prove Γ ⊢C A =⇒ Γ∗ ⊢I A∗ by induction on the derivation of Γ ⊢C A .

• Case CCONTR
We get Γ∗, (¬A )∗ ⊢I ⊥∗ = Γ∗, ¬(A∗) ⊢I ⊥ as an induction hypothesis, assume Γ ⊢C A and need to
show that Γ∗ ⊢I A∗. We justify this with the proof below. In the proof the fact (∗) is applicable to
A∗ since A∗ is negative as stated above.

I.H
Γ∗, ¬(A∗) ⊢I ⊥
Γ∗ ⊢I ¬¬(A∗)

(∗)
Γ∗ ⊢I A∗

• Case ∨I1
For some arbitrary but fixed A and B, we assume Γ ⊢C A and need to show Γ∗ ⊢I (A ∨ B)∗ =
Γ∗ ⊢I ¬(¬(A∗) ∧ ¬(B∗)). Furthermore, we have the induction hypothesis Γ∗ ⊢I A∗. We give the
following derivation for the goal:

I.H.
Γ′ ⊢I A∗

Γ′ ⊢I ¬(A∗) ∧ ¬(B∗)
∧E1

Γ′ ⊢I ¬(A∗)
Γ′ := Γ∗, ¬(A∗) ∧ ¬(B∗) ⊢I ⊥
Γ∗ ⊢I ¬(¬(A∗) ∧ ¬(B∗))

0
1
2
3
4
5
6
7
8
9

– Page 7 / 12 –



Sam
ple

Solu
tio

n

– Page 8 / 12 –



Sam
ple

Solu
tio

n

Additional space for solutions–clearly mark the (sub)problem your answers are related to and strike
out invalid solutions.

– Page 9 / 12 –



Sam
ple

Solu
tio

n

– Page 10 / 12 –



Sam
ple

Solu
tio

n

– Page 11 / 12 –



Sam
ple

Solu
tio

n

– Page 12 / 12 –


	p1a1c0: Off
	p1a1c1: Off
	p1a1c2: Off
	p1a1c3: Off
	p1b1c0: Off
	p1b1c1: Off
	p1b1c2: Off
	p1b1c3: Off
	p1c1c0: Off
	p1c1c1: Off
	p1c1c2: Off
	p1c1c3: Off
	p2a1c0: Off
	p2a1c1: Off
	p2a1c2: Off
	p2a1c3: Off
	p2a1c4: Off
	p2a1c5: Off
	p2a1c6: Off
	p2a1c7: Off
	p2a1c8: Off
	p2a1c9: Off
	p2a1c10: Off
	p3a1c0: Off
	p3a1c1: Off
	p3a1c2: Off
	p3b1c0: Off
	p3b1c1: Off
	p3b1c2: Off
	p3b1c3: Off
	p3b1c4: Off
	p3b1c5: Off
	p3c1c0: Off
	p3c1c1: Off
	p3c1c2: Off
	p3c1c3: Off
	p4a1c0: Off
	p4a1c1: Off
	p4a1c2: Off
	p4b1c0: Off
	p4b1c1: Off
	p4b1c2: Off
	p4b1c3: Off
	p5a1c0: Off
	p5a1c1: Off
	p5a1c2: Off
	p5a1c3: Off
	p5a1c4: Off
	p5a1c5: Off
	p5a1c6: Off
	p5a1c7: Off
	p5a1c8: Off
	p5a1c9: Off


