
Technische Universität München Lambda Calculus
Institut für Informatik Winter Term 2022/23
Prof. Tobias Nipkow, Ph.D. Solutions to Exercise Sheet 3
Lukas Stevens

Exercise 1 (Fixed-point Combinator)

a) In the last tutorial, we came up with an encoding for lists together with the functions
nil, cons, null, hd, and tl. Use a fixed-point combinator to compute the length of a
list in this encoding.

b) In the last homework, we encoded lists with the fold encoding, i.e. a list [x, y, z] is
represented as λc n. c x (c y (c z n)). Define a length function for lists in this encoding.

Solution

a) We use the Y-combinator:

y := λf. (λx. f (x x)) (λx. f (x x))

The Y-combinator satisfies the property y f =∗
β f (y f).

Recall how the Church numerals are implemented:

zero := λf x. x succ := λn f x. f (n f x)

In a programming language with recursion, length would be implemented as follows:

len x = if null x then 0 else Succ (len (tl x))

We obtain the following definition:

length := y (λl x. (null x) zero (succ (l (tl x)))

b) length := λl. l (λx. succ) 0

Exercise 2 (β-reduction on de Bruijn Preserves Substitution)

We consider an alternative representation of λ-terms that is due to de Bruijn. In this
representation, λ-terms are defined according to the following grammar:

d ::= i ∈ N0 | d1 d2 | λ d

a) Convert the terms λx y. x and λx y z. x z (y z) into terms according to de Bruijn.

b) Convert the term λ ((λ (1 (λ 1))) (λ (2 1))) into our usual representation.

c) Define substitution and β-reduction on de Bruijn terms.

d) Now restate Lemma 1.2.5 for de Bruijn terms and prove it:

s →β s′ =⇒ s[u/x] →β s′[u/x]

1



Solution

a) λ λ 1 and λ λ λ (2 0 (1 0)).

b) This example is taken from the Wikipedia article on de Bruijn indices where 1-based
indices are used. For 1-based indices the solution is λz. (λy. y (λx. x)) (λx. z x). For
0-based indices we have λz. (λy. z (λx. y)) (λx. f z) where f is some free variable.

c)

i ↑l =

{
i, if i < l

i+ 1, if i ≥ l

(d1 d2) ↑l = d1 ↑l d2 ↑l
(λ d) ↑l = λ d ↑l+1

i[t/j] =


i if i < j

t if i = j

i− 1 if i > j

(d1 d2)[t/j] = (d1[t/j]) (d2[t/j])

(λ d)[t/j] = λ (d[t ↑0 /j + 1])

We now define (λ d) e →β d[e/0]. Note that the β-reduction removes the λ surround-
ing the term d. This means that we need to decrease the indices of all free variables
in d by one, which is taken care of by the third case for i[t/j]. The other cases for
→β remain the same as before.

d) Similarly to the fourth assertion of Lemma 1.1.5 in the lecture, we first prove the key
property (*)

i < j + 1 −→ t[v ↑i /j + 1][u[v/j]/i] = t[u/i][v/j]

by induction on t. Now

s →β s′ =⇒ s[u/i] →β s′[u/i]

can be proved by induction on →β for arbitrary u and i.

The base case is the hardest. We need to show

((λ s) t)[u/i] →β s[t/0][u/i]

for arbitrary s, t. Proof:

((λ s) t)[u/i]

= (λ s[u ↑0 /i+ 1]) t[u/i] Def. of substitution

→β s[u ↑0 /i+ 1][t[u/i]/0]

= s[t/0][u/i] (*)

The other cases follow trivially from the rules of→β and the definition of substitution.

2

https://en.wikipedia.org/wiki/De_Bruijn_index


Homework 3 (Multiplication)

Define multiplication using fix and prove its correctness. You can assume that you are
given a predecessor function pred such that:

• pred 0 →∗
β 0

• pred (succ n) →∗
β n

Homework 4 (Efficient Substitution on de Bruijn)

We define a new lifting operator − ↑−−:

i ↑nl =

{
i, if i < l

i+ n, if i ≥ l

(d1 d2) ↑nl = d1 ↑nl d2 ↑nl
(λ d) ↑nl = λ d ↑nl+1

Use − ↑−− to define a more efficient version of substitution for de Bruijn terms that only
applies lifting in the case that a variable is actually replaced by a term. Prove that t[s/0]
yields the same result for both, your new version and the version from the tutorial. Hint :
Find a suitable generalization first.

Homework 5 (Expanding Lets)

We have a language with let-expressions, i.e.:

t ::= v | t t | let v = t in t

Write a program which expands all let-expressions. The let-semantics are:

(let v = t1 in t2) = (λv. t2) t1

3


