Technische Universitat Miinchen Lambda Calculus
Institut fiir Informatik Winter Term 2022/23
Prof. Tobias Nipkow, Ph.D. Solutions to Exercise Sheet 3

Lukas Stevens

Exercise 1 (Fixed-point Combinator)

a) In the last tutorial, we came up with an encoding for lists together with the functions
nil, cons, null, hd, and tl. Use a fixed-point combinator to compute the length of a
list in this encoding.

b) In the last homework, we encoded lists with the fold encoding, i.e. a list [z,y, z] is
represented as Acn. cx (cy (czn)). Define a length function for lists in this encoding.
Solution

a) We use the Y-combinator:
y:=A. (Az. f (z x)) Az. f (x x))

The Y-combinator satisfies the property y f =5 f (y f).
Recall how the Church numerals are implemented:

zero:= \f x. x succ:=An fx. f (n fx)

In a programming language with recursion, length would be implemented as follows:
len x = if null x then O else Succ (len (tl x))
We obtain the following definition:
length:=y (Al z. (null z) zero (succ (I (tl z)))

b) length:= Al. [ (Az. succ) 0

Exercise 2 ((-reduction on de Bruijn Preserves Substitution)

We consider an alternative representation of A-terms that is due to de Bruijn. In this

representation, A\-terms are defined according to the following grammar:
di=ieNy|ddy| Nd

a) Convert the terms Az y. x and Az y z. = z (y 2) into terms according to de Bruijn.

b) Convert the term A ((A (1 (A 1))) (A (2 1))) into our usual representation.

c¢) Define substitution and S-reduction on de Bruijn terms.

)
)
)
d)

Now restate Lemma 1.2.5 for de Bruijn terms and prove it:

s =g s = slu/z] =5 s'[u/x]



Solution

a)
b)

c)

AXTland A XA (20 (10)).

This example is taken from the Wikipedia article on de Bruijn indices where 1-based
indices are used. For 1-based indices the solution is Az. (A\y. y (Ax. z)) (Az. z x). For
0-based indices we have Az. (A\y. z (Az. y)) (Az. f z) where f is some free variable.

i1 = 1, if i <
Tl i >

(dl d2> Tl = dl Tl d2 Tl
(A d) = A d i

rifi <y
ift/jl=qtifi=
i—1ifi>j
(di d2)[t/j] = (dult/5]) (d2ft/5])
(A d)[t/5] = X (d]t to /5 +1])
We now define (A d) e —3 d[e/0]. Note that the S-reduction removes the A surround-
ing the term d. This means that we need to decrease the indices of all free variables

in d by one, which is taken care of by the third case for i[t/j]. The other cases for
— 3 remain the same as before.

Similarly to the fourth assertion of Lemma 1.1.5 in the lecture, we first prove the key
property (*)
i <j+1— 1t /j+1ulv/j]/i] = tlu/i]v/]]

by induction on ¢. Now
s =g s = s[u/i] =5 $'[u/i]
can be proved by induction on — g for arbitrary u and i.

The base case is the hardest. We need to show

(A s) O)fu/i] =5 s[t/0][u/i]
for arbitrary s,t. Proof:
(A s) t)[u/i]
= (A suto /i+ 1)) t{u/i] Def. of substitution
—g sluto /i 4 1[tu/i]/0]
= s[t/0][u/i] (*)

The other cases follow trivially from the rules of — 3 and the definition of substitution.


https://en.wikipedia.org/wiki/De_Bruijn_index

Homework 3 (Multiplication)

Define multiplication using fix and prove its correctness. You can assume that you are
given a predecessor function pred such that:

e pred 0 =3 0

e pred (succ n) =5 n

Homework 4 (Efficient Substitution on de Bruijn)
We define a new lifting operator — 1_:
i ifi <
= {i+n, if i >
(dy do) 1] = dy 17 do 1
(Ad) 17" = Ad 1y,

Use — 1= to define a more efficient version of substitution for de Bruijn terms that only
applies lifting in the case that a variable is actually replaced by a term. Prove that ¢[s/0]
yields the same result for both, your new version and the version from the tutorial. Hint:
Find a suitable generalization first.

Homework 5 (Expanding Lets)
We have a language with let-expressions, i.e.:
ti=wv|tt|letv=tint
Write a program which expands all 1et-expressions. The let-semantics are:

(let v = tl in tg) = (/\U tQ) tl



