
Technische Universität München Lambda Calculus
Institut für Informatik Winter Term 2022/23
Prof. Tobias Nipkow, Ph.D. Solutions to Exercise Sheet 9
Lukas Stevens

Exercise 1 (Constraint Solving)

During type inference we generate type unification constraints between types of the form

τ1
?
= κ1, . . . , τn

?
= κn. In order to solve these constraints, we want to find a substitution

function σ such that σ(τi) = σ(κi) for i ∈ {1, . . . , n}. For each of the following constraint
systems, find such a substitution or justify that no such substitution exists. Additionally,
give a λ-term that has the type σ(τ0).

a) τ0
?
= τ1 → τ2, τ1

?
= τ2

b) τ0
?
= τ1 → τ2, τ2

?
= τ3 → τ4, τ4

?
= τ1

c) τ0
?
= τ1 → τ2, τ2

?
= τ3 → τ4, τ1

?
= τ5 → τ4, τ1

?
= τ3 → τ5

d) τ0
?
= τ1 → τ2, τ1

?
= τ3 → τ2, τ3

?
= τ1

Solution

The algorithm to solve these constraints is given in the exercise below. We illustrate how
the algorithm works using part c). The changes between the steps of the algorithm are
highlighted by the underlines.

a) id

b) fst

c) (λf x. f (f x))

• τ0
?
= τ1 → τ2, τ2

?
= τ3 → τ4, τ1

?
= τ5 → τ4, τ1

?
= τ3 → τ5, σ = id

• τ2
?
= τ3 → τ4, τ1

?
= τ5 → τ4, τ1

?
= τ3 → τ5, σ = id{τ0 7→ τ1 → τ2}

• τ1
?
= τ5 → τ4, τ1

?
= τ3 → τ5, σ = id{τ0 7→ τ1 → (τ3 → τ4), τ2 7→ τ3 → τ4}

• τ5 → τ4
?
= τ3 → τ5, σ = id{τ0 7→ (τ5 → τ4) → (τ3 → τ4), τ2 7→ τ3 →

τ4, τ1 7→ τ5 → τ4}

• τ5
?
= τ3, τ4

?
= τ5, σ = id{τ0 7→ (τ5 → τ4) → (τ3 → τ4), τ2 7→ τ3 → τ4, τ1 7→ τ5 →

τ4}

• τ4
?
= τ3, σ = id{τ0 7→ (τ3 → τ4) → (τ3 → τ4), τ2 7→ τ3 → τ4, τ1 7→ τ3 →

τ4, τ5 7→ τ3}

1



• σ = id{τ0 7→ (τ3 → τ3) → (τ3 → τ3), τ2 7→ τ3 → τ3, τ1 7→ τ3 → τ3, τ5 7→
τ3, τ4 7→ τ3}

d) (λx. x x)

Exercise 2 (Type Inference in Haskell)

In this exercise, we will develop a type inference algorithm for the simply typed λ-calculus
in Haskell. The general idea of the algorithm is to apply the type inference rules in a
backward manner and to record equality constraints between types on the way. These
constraints are then solved to obtain the result type.

a) Take a look at the template provided on the website. We have provided definitions of
terms and types in the simply typed λ-calculus, together with syntax sugar for input
and printing. Moreover, you can find the type of substitutions and utility functions
to work with substitutions, types and terms.

b) The first component of the algorithm is unification on types. Given a list of equality

constraints between types of the form u1
?
= t1, . . . , un

?
= tn, we want to produce a

suitable substitution ϕ such that ϕ(ui) = ti for all 1 ≤ i ≤ n or report that the given
constraints do not have a solution. Fill in the remaining cases of the function solve
that achieves this functionality.

c) Now we want to apply the type inference rules and record the arising type constraints.
Function constraints of type

Term → Type → Env → (Int, [(Type, Type)]) → Maybe (Int, [(Type, Type)])

will achieve this functionality. Given a term t, a type τ , an enviroment Γ, and a pair
(n,C), it will try to justify Γ ⊢ t : τ , adding the arising type constraints to C. The
natural number n is used to keep track of the least variable index that is currently
unused. This allows to easily generate fresh variable names. Complete the definition
of constraints.

d) Define the function infer that infers the type of a term by combining solve and
constraints and try it on a few examples.

Solution

See type inference.hs.

Exercise 3 (Every Type is Applicative)

a) Show that every type is substitutive.

b) Show that every type is applicative.

2



Solution

a) We first show that every type τ is of the form

τ1 → . . . τn → τ ′

with τ ′ not of function type by induction on τ . The case where τ is elementary is
immediate. If τ = τ1 → τ2, τ2 is either not of function type and we are done, or we
can apply the induction hypothesis to τ2, and we are done. Note that → associates
to the right.

Now, we use this as an induction rule on types to show the original statement. Thus,
assume τ = τ1 → . . . τn → τ ′, and that the τi are all substitutive (IH). By Lemma
3.2.3, the τi are all applicative, and thus τ is substitutive by Lemma 3.2.4.

b) By Lemma 3.2.3

3



Homework 4 (Types of Church Numerals)

a) Let τ be any type. Show that for the n-th Church numeral n, we have

[] ⊢ n: (τ → τ) → τ → τ

.

b) Show that every term t ∈ NF with [] ⊢ t : (ι → ι) → ι → ι, t is either id or a church
numeral. Here ι is any elementary type.

Homework 5 (Completeness of T )

In this exercise, you will show the converse of Lemma 3.2.2, i.e.

⇓ t =⇒ t ∈ T

.

a) Show that every λ-term has one of the following shapes:

• x r1 . . . rn

• λx. r

• (λx. r) s s1 . . . sn

Note that this gives rise to an alternative inductive definition for λ-terms and to a
corresponding rule induction on λ-terms.

b) ⇓ gives rise to a wellfounded induction principle. To show

∀t. ⇓ t =⇒ P (t) ,

it suffices to prove:

∀t. (∀t′. t →β t′ =⇒ P (t′)) =⇒ P (t) .

Use this to prove:
⇓ t =⇒ t ∈ T

Hint : Use (a) for an inner induction on terms.

4


