Exercise 1 (Fixed-point Combinator)

a) In the last tutorial, we came up with an encoding for lists together with the functions nil, cons, null, hd, and tl. Use a fixed-point combinator to compute the length of a list in this encoding.

b) In the last homework, we encoded lists with the fold encoding, i.e. a list \([x, y, z]\) is represented as \(\lambda c \, n. \, c \, x \,(c \, y \,(c \, z \, n))\). Define a length function for lists in this encoding.
Exercise 2 (β-reduction on de Bruijn Preserves Substitution)

We consider an alternative representation of λ-terms that is due to de Bruijn. In this representation, λ-terms are defined according to the following grammar:

\[d ::= i \in \mathbb{N}_0 \mid d_1 \cdot d_2 \mid \lambda \ d \]

a) Convert the terms \(\lambda x \ y. \ x \) and \(\lambda x \ y \ z. \ x \ z \ (y \ z) \) into terms according to de Bruijn.

b) Convert the term \(\lambda ((\lambda (1 (\lambda 1))) (\lambda (2 1))) \) into our usual representation.

c) Define substitution and β-reduction on de Bruijn terms.

d) Now restate Lemma 1.2.5 for de Bruijn terms and prove it:

\[s \rightarrow_{\beta} s' \implies s[u/x] \rightarrow_{\beta} s'[u/x] \]
Homework 3 (Multiplication)

Define multiplication using fix and prove its correctness. You can assume that you are given a predecessor function \(\text{pred} \) such that:

- \(\text{pred} \ 0 \to^\beta 0 \)
- \(\text{pred} \ (\text{succ} \ n) \to^\beta n \)

Homework 4 (Efficient Substitution on de Bruijn)

We define a new lifting operator \(- \uparrow^n-\):

\[
i \uparrow^n_l = \begin{cases}
 i, & \text{if } i < l \\
 i + n, & \text{if } i \geq l
\end{cases}
\]

\[
(d_1 \ d_2) \uparrow^n_l = d_1 \uparrow^n_l \ d_2 \uparrow^n_l
\]

\[
(\lambda \ d) \uparrow^n_l = \lambda \ d \uparrow^{n+1}_{l+1}
\]

Use \(- \uparrow^n-\) to define a more efficient version of substitution for de Bruijn terms that only applies lifting in the case that a variable is actually replaced by a term. Prove that \(t[s/0] \) yields the same result for both, your new version and the version from the tutorial. **Hint:** Find a suitable generalization first.

Homework 5 (ExpandingLets)

We have a language with \texttt{let}-expressions, i.e.:

\[
t ::= v \mid t \ t \mid \texttt{let} \ v = t \ \texttt{in} \ t
\]

Write a program which expands all \texttt{let}-expressions. The \texttt{let}-semantics are:

\[
(\texttt{let} \ v = t_1 \ \texttt{in} \ t_2) = (\lambda v. \ t_2) \ t_1
\]

You can find a Haskell template for this exercise here.