Technische Universität München Institut für Informatik Prof. Tobias Nipkow, Ph.D. Lukas Stevens Lambda Calculus Winter Term 2023/24 Exercise Sheet 5

Exercise 1 (Confluence & Commutation)

Show: If \rightarrow_1 and \rightarrow_2 are confluent, and if \rightarrow_1^* and \rightarrow_2^* commute, then $\rightarrow_{12} := \rightarrow_1 \cup \rightarrow_2$ is also confluent.

Exercise 2 (Confluence of β -Reduction with Takahashi functions)

In the lecture, we have shown the confluence of \rightarrow_{β} using the diamond property of parallel β -reduction. In this exercise, we develop an alternative proof based on what are sometimes called Takahashi functions. A function ρ is a Takahashi function with respect to a reduction relation > if it holds that

$$s > t \Longrightarrow t > \rho(s).$$

a) Show that \rightarrow is confluent if it holds that $\rightarrow \subseteq > \subseteq \rightarrow^*$ and there exists a Takahashi function ρ for >.

We define the operation $-^*$ on λ -terms inductively over the structure of terms:

$$\begin{array}{rcl}
x^* &=& x \\
(\lambda x. t)^* &=& \lambda x. t^* \\
(t_1 t_2)^* &=& t_1^* t_2^* & \text{if } t_1 t_2 \text{ is not a } \beta \text{-redex.} \\
((\lambda x. t_1) t_2)^* &=& t_1^* [t_2^*/x]
\end{array}$$

b) Show that \rightarrow_{β} is confluent by proving that $-^*$ is a Takahashi function for the parallel and nested reduction >.

Exercise 3 (Parallel Beta Reduction)

Show:

$$s > t \Longrightarrow s \to_{\beta}^{*} t$$

Homework 4 (Local Confluence of η -reduction)

Analogously to β -reduction, we define η -reduction inductively:

1. $x \notin \mathsf{FV}(s) \Longrightarrow (\lambda x. s \ x) \to_{\eta} s$ 2. $s \to_{\eta} s' \Longrightarrow s \ t \to_{\eta} s' t$ 3. $s \to_{\eta} s' \Longrightarrow t \ s \to_{\eta} t \ s'$ 4. $s \to_{\eta} s' \Longrightarrow (\lambda x. s) \to_{\eta} (\lambda x. s')$

The proof of local confluence of \rightarrow_{η} , i.e. it holds that there exists a u with $t_1 \rightarrow_{\eta}^* u_{\eta}^* \leftarrow t_2$ if we have $t_1 \sim_{\eta} \leftarrow s \rightarrow_{\eta} t_2$, was very informal. Give a proper proof using this definition.

Homework 5 (Parallel Beta Reduction & Substitution)

Show:

$$s > s' \wedge t > t' \Longrightarrow s[t/x] > s'[t'/x]$$

Homework 6 (A Takahashi function for combinatory logic)

Instead of the λ -calculus, we consider *combinatory logic* in this exercise whose syntax consists of variables, application, and the combinators K and S:

$$s,t ::= x \in \mathbb{N}_0 \mid s t \mid \mathsf{K} \mid \mathsf{S}.$$

We inductively define a reduction relation \rightarrow_w for this calculus with:

- 1. K $s t \rightarrow_{\mathsf{w}} s$
- 2. $S s t u \rightarrow_{w} s u (t u)$
- 3. $s \to_{\mathsf{w}} s' \Longrightarrow s t \to_{\mathsf{w}} s' t$
- 4. $t \to_{\mathsf{w}} t' \Longrightarrow s t \to_{\mathsf{w}} s t'$

Use the strategy from the tutorial to prove that \rightarrow_{w} is confluent by defining a parallel and nested reduction relation $>_{w}$ for this calculus and a Takahashi function $-^{*}$ for $>_{w}$.