Exercise 1 (Confluence \& Commutation)

Show: If \rightarrow_{1} and \rightarrow_{2} are confluent, and if \rightarrow_{1}^{*} and \rightarrow_{2}^{*} commute, then $\rightarrow_{12}:=\rightarrow_{1} \cup \rightarrow_{2}$ is also confluent.

Exercise 2 (Confluence of β-Reduction with Takahashi functions)

In the lecture, we have shown the confluence of \rightarrow_{β} using the diamond property of parallel β-reduction. In this exercise, we develop an alternative proof based on what are sometimes called Takahashi functions. A function ρ is a Takahashi function with respect to a reduction relation $>$ if it holds that

$$
s>t \Longrightarrow t>\rho(s)
$$

a) Show that \rightarrow is confluent if it holds that $\rightarrow \subseteq>\subseteq \rightarrow^{*}$ and there exists a Takahashi function ρ for $>$.

We define the operation $-*$ on λ-terms inductively over the structure of terms:

$$
\begin{aligned}
x^{*} & =x \\
(\lambda x . t)^{*} & =\lambda x \cdot t^{*} \\
\left(t_{1} t_{2}\right)^{*} & =t_{1}^{*} t_{2}^{*} \quad \text { if } t_{1} t_{2} \text { is not a } \beta \text {-redex. } \\
\left(\left(\lambda x . t_{1}\right) t_{2}\right)^{*} & =t_{1}^{*}\left[t_{2}^{*} / x\right]
\end{aligned}
$$

b) Show that \rightarrow_{β} is confluent by proving that $-*$ is a Takahashi function for the parallel and nested reduction $>$.

Exercise 3 (Parallel Beta Reduction)

Show:

$$
s>t \Longrightarrow s \rightarrow_{\beta}^{*} t
$$

Homework 4 (Local Confluence of η-reduction)

Analogously to β-reduction, we define η-reduction inductively:

1. $x \notin \mathrm{FV}(s) \Longrightarrow(\lambda x . s x) \rightarrow_{\eta} s$
2. $s \rightarrow_{\eta} s^{\prime} \Longrightarrow s t \rightarrow_{\eta} s^{\prime} t$
3. $s \rightarrow_{\eta} s^{\prime} \Longrightarrow t s \rightarrow_{\eta} t s^{\prime}$
4. $s \rightarrow_{\eta} s^{\prime} \Longrightarrow(\lambda x . s) \rightarrow_{\eta}\left(\lambda x . s^{\prime}\right)$

The proof of local confluence of \rightarrow_{η}, i.e. it holds that there exists a u with $t_{1} \rightarrow_{\eta}^{*} u_{\eta}^{*} \leftarrow t_{2}$ if we have $t_{1}{ }_{\eta} \leftarrow s \rightarrow_{\eta} t_{2}$, was very informal. Give a proper proof using this definition.

Homework 5 (Parallel Beta Reduction \& Substitution)

Show:

$$
s>s^{\prime} \wedge t>t^{\prime} \Longrightarrow s[t / x]>s^{\prime}\left[t^{\prime} / x\right]
$$

Homework 6 (A Takahashi function for combinatory logic)

Instead of the λ-calculus, we consider combinatory logic in this exercise whose syntax consists of variables, application, and the combinators K and S :

$$
s, t::=x \in \mathbb{N}_{0}|s t| \mathrm{K} \mid \mathrm{S} .
$$

We inductively define a reduction relation \rightarrow_{w} for this calculus with:

1. $\mathrm{K} s t \rightarrow_{\mathrm{w}} s$
2. S stu \rightarrow_{w} su(tu)
3. $s \rightarrow_{w} s^{\prime} \Longrightarrow s t \rightarrow_{w} s^{\prime} t$
4. $t \rightarrow_{\mathrm{w}} t^{\prime} \Longrightarrow s t \rightarrow_{\mathrm{w}} s t^{\prime}$

Use the strategy from the tutorial to prove that \rightarrow_{w} is confluent by defining a parallel and nested reduction relation $>_{w}$ for this calculus and a Takahashi function $-*$ for $>_{w}$.

