Technische Universität München
 Institut für Informatik

Lambda Calculus

Prof. Tobias Nipkow, Ph.D.
Lukas Stevens
Exercise Sheet 7

The tutorial will not take place this week due to the Dies Academicus.

Exercise 1 (Reduction Relation with Closures)

For the evaluation of lambda terms that is closer to evaluation of programs in functional programming languages, one usually replaces textual substitution $t[v / x]$ with a more lazy approach that records the binding $x \mapsto v$ in an environment. These bindings are used whenever we need the value of a variable v.

In this approach abstractions $\lambda x . t$ do not evaluate to themselves, but to a pair $(\lambda x . t)[e]$, where e is the current environment. We call such pairs function closures.
a) Define a big-step reduction relation for the lambda calculus with function closures and environments.
b) Add explicit error handling for the case where the binding of a free variable v cannot be found in the enviroment. Introduce an explicit value abort to indicate such an exception in the relation.

Exercise 2 (Better Translation Algorithm)

Give a variant of the translation algorithm that produces shorter terms. More specifically, define a variant of $\lambda^{*} x$. t that analyzes more precisely where x actually appears in t.

Homework 3 (Proofs with Small-steps and Big-steps)

Let $\omega:=\lambda x, x x$ and

$$
t:=(\lambda x \cdot(\lambda x y \cdot x) z y)(\omega \omega((\lambda x y \cdot x) y)) .
$$

Prove the following:
a) $t \Rightarrow_{n} z$
b) $t \rightarrow_{c b v}^{3} t$
c) $t \not \nrightarrow c_{c b n}^{+} t$

Homework 4 (More Combinators)

Find combinators O and W such that:

$$
\begin{gathered}
\mathrm{O} \rightarrow^{+} \mathrm{O} \\
\mathrm{~W} X Y \rightarrow^{*} X Y Y
\end{gathered}
$$

Homework 5 (Mocking Birds)

Consider a combinatory logic that only provides the basic combinators B and M (the "mocking bird") where:

$$
\begin{gathered}
\mathrm{B} X Y Z \rightarrow^{*} X\binom{Y}{\hline} \\
\mathrm{M} X \rightarrow^{*} X X
\end{gathered}
$$

Prove the following properties of this logic:
a) For every combinator X, there is a combinator Y such that $Y \rightarrow^{*} X Y$.
b) For all combinators U and W, there exist combinators X and Y such that $Y \rightarrow{ }^{*} U X$ and $X \rightarrow{ }^{*} W Y$.

Homework 6 (Correctness of the Translation Algorithm)

Show that the translation algorithm given in the tutorial is correct. That is, show that it fulfills the following property:

$$
\left(\lambda^{*} x . X\right) Y \rightarrow^{*} X[Y / x]
$$

