Exercise 1 (Confluence \& Commutation)

Show: If \rightarrow_{1} and \rightarrow_{2} are confluent, and if \rightarrow_{1}^{*} and \rightarrow_{2}^{*} commute, then $\rightarrow_{12}:=\rightarrow_{1} \cup \rightarrow_{2}$ is also confluent.

Solution

Lemma A.3.2 from the lecture. The key idea is to consider $\rightarrow_{1}^{*} \circ \rightarrow_{2}^{*}$ as \rightarrow_{12}^{*} unfolds into iterations of this relation, i.e. $\left(\rightarrow_{1}^{*} \circ \rightarrow_{2}^{*}\right)^{*}=\rightarrow_{12}^{*}$. More precisely:

$$
\begin{equation*}
\rightarrow_{12} \subseteq \rightarrow_{1}^{*} \circ \rightarrow_{2}^{*} \subseteq \rightarrow_{12}^{*} \tag{}
\end{equation*}
$$

The relation $\rightarrow_{1}^{*} \circ \rightarrow_{2}^{*}$ has the diamond property:

With $\left({ }^{*}\right)$ and Lemma A. 2.5 it immediately follows that \rightarrow_{12} is confluent.

Exercise 2 (Confluence of β-Reduction with Takahashi functions)

In the lecture, we have shown the confluence of \rightarrow_{β} using the diamond property of parallel β-reduction. In this exercise, we develop an alternative proof based on what are sometimes called Takahashi functions. A function ρ is a Takahashi function with respect to a reduction relation $>$ if it holds that

$$
s>t \Longrightarrow t>\rho(s) .
$$

a) Show that \rightarrow is confluent if it holds that $\rightarrow \subseteq>\subseteq \rightarrow^{*}$ and there exists a Takahashi function ρ for $>$.

We define the operation $-^{*}$ on λ-terms inductively over the structure of terms:

$$
\begin{aligned}
x^{*} & =x \\
(\lambda x . t)^{*} & =\lambda x \cdot t^{*} \\
\left(t_{1} t_{2}\right)^{*} & =t_{1}^{*} t_{2}^{*} \quad \text { if } t_{1} t_{2} \text { is not a } \beta \text {-redex. } \\
\left(\left(\lambda x . t_{1}\right) t_{2}\right)^{*} & =t_{1}^{*}\left[t_{2}^{*} / x\right]
\end{aligned}
$$

b) Show that \rightarrow_{β} is confluent by proving that $-*$ is a Takahashi function for the parallel and nested reduction $>$.

Solution

a) Since ρ has the Takahashi-property, it follows that $>$ has the diamond property: Let $s>t_{1}$ and $s>t_{2}$. Then, we have both $t_{1}>\rho(s)$ and $t_{2}>\rho(s)$. Like in the lecture, we have that

$$
\rightarrow \subseteq>\subseteq \rightarrow^{*} \Longrightarrow \rightarrow^{*} \subseteq>^{*} \subseteq \rightarrow^{*} \Longleftrightarrow>^{*}=\rightarrow^{*}
$$

and since $>$ has the diamond property it follows that \rightarrow is confluent.
b) We prove that -* has the Takahashi property, i.e.

$$
s>t \quad \Longrightarrow \quad t>s^{*}
$$

by -* computation induction on s for arbitrary t. In the following, we will skip instances of $s>s$, as we can easily prove $s>s^{*}$ by another structural induction on s.

1st case: $s=x$.
Assume $x>t$. Hence $t=x$. Thus $t=x>x=x^{*}=s^{*}$.
2nd case: $s=\lambda x . s_{1}$.
Assume $\lambda x . s_{1}>t$. Furthermore, we get the induction hypothesis $s_{1}>t \Longrightarrow t>$ s_{1}^{*} for arbitrary t. By case analysis on the derivation of $s>t$ we obtain $t=\lambda x . t_{1}$ for an appropriate t_{1} and we have $s_{1}>t_{1}$. This implies $t_{1}>s_{1}^{*}$ considering the induction hypothesis. Thus we get $t=\lambda x . t_{1}>\lambda x . s_{1}^{*}=\left(\lambda x . s_{1}\right)^{*}=s^{*}$.

3rd case: $s=s_{1} s_{2}$, but s is not a β-redex.
Assume $s_{1} s_{2}>t$. As induction hypotheses we obtain $s_{i}>t \Longrightarrow t>s_{i}^{*}$ for arbitrary t and $i \in\{1,2\}$. Then $t=t_{1} t_{2}$ with $s_{1}>t_{1}$ and $s_{2}>t_{2}$ (again this follows by case analysis using the inductive definition of $>$). We get the induction hypotheses $t_{1}>s_{1}^{*}$ and $t_{2}>s_{2}^{*}$. By the definition of $>$ this implies $t=t_{1} t_{2}>s_{1}^{*} s_{2}^{*}=\left(s_{1} s_{2}\right)^{*}=s^{*}$.

4th case: $s=\left(\lambda x . s_{1}\right) s_{2}$.
Assume $\left(\lambda x . s_{1}\right) s_{2}>t$. Then there is t_{1}, t_{2} with $s_{1}>t_{1}$ and $s_{2}>t_{2}$ and we have $t=\left(\lambda x . t_{1}\right) t_{2}$ or $t=t_{1}\left[t_{2} / x\right]$, depending on the rule used to derive $s>t$. Note that the first case actually requires a nested case distinction: first
we consider the case that $t=t_{1}^{\prime} t_{2}$ by the third rule in the definition of $>$. This requires that $\left(\lambda x . s_{1}\right)>t_{1}^{\prime}$. Hence, $t_{1}^{\prime}=\left(\lambda x . t_{1}\right)$ and $s_{1}>t_{1}$ follows by another case distinction on $\left(\lambda x . s_{1}\right)>t_{1}^{\prime}$.
Case $4.1 t=\left(\lambda x . t_{1}\right) t_{2}$.
By the induction hypotheses $t_{1}>s_{1}^{*}$ and $t_{2}>s_{2}^{*}$, we get $t=\left(\lambda x . t_{1}\right) t_{2}>$ $s_{1}^{*}\left[s_{2}^{*} / x\right]=\left(\left(\lambda x . s_{1}\right) s_{2}\right)^{*}=s^{*}$.
Case $4.2 t=t_{1}\left[t_{2} / x\right]$.
By the induction hypotheses $t_{1}>s_{1}^{*}$ and $t_{2}>s_{2}^{*}$, and the substitution propery of $>($ Lemma 1.2.13 $)$, we get $t=t_{1}\left[t_{2} / x\right]>s_{1}^{*}\left[s_{2}^{*} / x\right]=\left(\left(\lambda x . s_{1}\right) s_{2}\right)^{*}=$ s^{*}.

A different proof is by structural induction on s for arbitrary t.
Case $s=x$.
Assume $x>t$. Hence $t=x$ by case analysis on the $x>t$. Thus $t=x>x=$ $x^{*}=s^{*}$.
Case $s=\lambda x . s_{1}$.
Assume $\lambda x . s_{1}>t$. Furthermore, we get the induction hypothesis $s_{1}>t \Longrightarrow t>$ s_{1}^{*} for arbitrary t. By case analysis on the derivation of $s>t$ we obtain $t=\lambda x . t_{1}$ for an appropriate t_{1} and we have $s_{1}>t_{1}$. This, together with the induction hypothesis, implies $t_{1}>s_{1}^{*}$. Thus, we get $t=\lambda x . t_{1}>\lambda x . s_{1}^{*}=\left(\lambda x . s_{1}\right)^{*}=s^{*}$.
Case $s=s_{1} s_{2}$.
Assume $s_{1} s_{2}>t$. As induction hypotheses we obtain $s_{i}>t \Longrightarrow t>s_{i}^{*}$ for arbitrary t and $i \in\{1,2\}$. Case analysis on the derivation of $s_{1} s_{2}>t$ yields two cases.

- We have $t=t_{1} t_{2}$ and $s_{1}>t_{1}$ as well as $s_{2}>t_{2}$, or
- $s_{1}=\left(\lambda x . s_{3}\right)$ and $t=t_{1}\left[t_{2} / x\right]$ as well as $s_{3}>t_{1}$ and $s_{2}>t_{2}$.

Case $t=t_{1} t_{2}$.
From the induction hypotheses we have $t_{1}>s_{1}^{*}$ and $t_{2}>s_{2}^{*}$. This implies that $t=t_{1} t_{2}>s_{1}^{*} s_{2}^{*}=\left(s_{1} s_{2}\right)^{*}=s^{*}$

Case $t=t_{1}\left[t_{2} / x\right]$.
We can only discharge the assumption of the second induction hypothesis which gives us $t_{2}>s_{2}^{*}$. To obtain $t_{1}>s_{3}^{*}$, we actually need an induction on the size of the term s - or a strong induction on the structure of s - such that the I.H. holds for all proper subterms of s (in particular $\left.s_{3}\right)$. Together with the substitution propery of $>$ (Lemma 1.2.13), we get $t=t_{1}\left[t_{2} / x\right]>s_{3}^{*}\left[s_{2}^{*} / x\right]=\left(\left(\lambda x . s_{3}\right) s_{2}\right)^{*}=s^{*}$.

Exercise 3 (Parallel Beta Reduction)

Show:

$$
s>t \Longrightarrow s \rightarrow_{\beta}^{*} t
$$

Solution

Proof by rule induction on $>$.
Case $s>s$: We have that $s=t$ and $s \rightarrow_{\beta}^{*} s$.
Case $\lambda x . s>\lambda x . s^{\prime}$: As an induction hypothesis we get $s \rightarrow_{\beta}^{*} s^{\prime}$. By Lemma 1.2.3 we obtain our goal $\lambda x . s \rightarrow_{\beta}^{*} \lambda x . s^{\prime}$.

Case $s t>s^{\prime} t^{\prime}$: As induction hypotheses we get $s \rightarrow_{\beta}^{*} s^{\prime}$ and $t \rightarrow_{\beta}^{*} t^{\prime}$. With Lemma 1.2.3 we get $s t \rightarrow_{\beta}^{*} s^{\prime} t \rightarrow_{\beta}^{*} s^{\prime} t^{\prime}$ and therefore $s t \rightarrow_{\beta}^{*} s^{\prime} t^{\prime}$.

Case $(\lambda x . s) t>s^{\prime}\left[t^{\prime} / x\right]$: As induction hypotheses we get $s \rightarrow_{\beta}^{*} s^{\prime}$ and $t \rightarrow_{\beta}^{*} t^{\prime}$. With Lemma 1.2.3 it holds that $(\lambda x . s) t \rightarrow_{\beta}^{*}\left(\lambda x . s^{\prime}\right) t \rightarrow_{\beta}^{*}\left(\lambda x . s^{\prime}\right) t^{\prime} \rightarrow_{\beta} s^{\prime}\left[t^{\prime} / x\right]$ and thus $(\lambda x . s) t \rightarrow_{\beta}^{*}\left(\lambda x . s^{\prime}\right) t^{\prime}$.

Homework 4 (Local Confluence of η-reduction)

Analogously to β-reduction, we define η-reduction inductively:

1. $x \notin \mathrm{FV}(s) \Longrightarrow(\lambda x . s x) \rightarrow_{\eta} s$
2. $s \rightarrow_{\eta} s^{\prime} \Longrightarrow s t \rightarrow_{\eta} s^{\prime} t$
3. $s \rightarrow_{\eta} s^{\prime} \Longrightarrow t s \rightarrow_{\eta} t s^{\prime}$
4. $s \rightarrow_{\eta} s^{\prime} \Longrightarrow(\lambda x . s) \rightarrow_{\eta}\left(\lambda x . s^{\prime}\right)$

The proof of local confluence of \rightarrow_{η}, i.e. it holds that there exists a u with $t_{1} \rightarrow_{\eta}^{*} u_{\eta}^{*} \leftarrow t_{2}$ if we have $t_{1}{ }_{\eta} \leftarrow s \rightarrow_{\eta} t_{2}$, was very informal. Give a proper proof using this definition.

Homework 5 (Parallel Beta Reduction \& Substitution)

Show:

$$
s>s^{\prime} \wedge t>t^{\prime} \Longrightarrow s[t / x]>s^{\prime}\left[t^{\prime} / x\right]
$$

Homework 6 (A Takahashi function for combinatory logic)

Instead of the λ-calculus, we consider combinatory logic in this exercise whose syntax consists of variables, application, and the combinators K and S :

$$
s, t::=x \in \mathbb{N}_{0}|s t| \mathrm{K} \mid \mathrm{S} .
$$

We inductively define a reduction relation \rightarrow_{w} for this calculus with:

1. $\mathrm{K} s t \rightarrow_{\mathrm{w}} s$
2. S stu \rightarrow_{w} su(tu)
3. $s \rightarrow_{w} s^{\prime} \Longrightarrow s t \rightarrow_{w} s^{\prime} t$
4. $t \rightarrow_{\mathrm{w}} t^{\prime} \Longrightarrow s t \rightarrow_{\mathrm{w}} s t^{\prime}$

Use the strategy from the tutorial to prove that \rightarrow_{w} is confluent by defining a parallel and nested reduction relation $>_{w}$ for this calculus and a Takahashi function $-{ }^{*}$ for $>_{w}$.

