Technische Universität München Institut für Informatik Prof. Tobias Nipkow, Ph.D. Lukas Stevens Lambda Calculus Winter Term 2023/24 Solutions to Exercise Sheet 5

Exercise 1 (Confluence & Commutation)

Show: If \rightarrow_1 and \rightarrow_2 are confluent, and if \rightarrow_1^* and \rightarrow_2^* commute, then $\rightarrow_{12} := \rightarrow_1 \cup \rightarrow_2$ is also confluent.

Solution

Lemma A.3.2 from the lecture. The key idea is to consider $\rightarrow_1^* \circ \rightarrow_2^*$ as \rightarrow_{12}^* unfolds into iterations of this relation, i.e. $(\rightarrow_1^* \circ \rightarrow_2^*)^* = \rightarrow_{12}^*$. More precisely:

$$\rightarrow_{12} \subseteq \rightarrow_1^* \circ \rightarrow_2^* \subseteq \rightarrow_{12}^* \qquad (*)$$

The relation $\rightarrow_1^* \circ \rightarrow_2^*$ has the diamond property:

With (*) and Lemma A.2.5 it immediately follows that \rightarrow_{12} is confluent.

Exercise 2 (Confluence of β -Reduction with Takahashi functions)

In the lecture, we have shown the confluence of \rightarrow_{β} using the diamond property of parallel β -reduction. In this exercise, we develop an alternative proof based on what are sometimes called Takahashi functions. A function ρ is a Takahashi function with respect to a reduction relation > if it holds that

$$s > t \Longrightarrow t > \rho(s).$$

a) Show that \rightarrow is confluent if it holds that $\rightarrow \subseteq \geq \subseteq \rightarrow^*$ and there exists a Takahashi function ρ for \geq .

We define the operation $-^*$ on λ -terms inductively over the structure of terms:

$$\begin{array}{rcl}
x^* &=& x\\ (\lambda x.\ t)^* &=& \lambda x.\ t^*\\ (t_1\ t_2)^* &=& t_1^*\ t_2^* & \text{if } t_1\ t_2 \text{ is not a } \beta\text{-redex.}\\ (\lambda x.\ t_1)\ t_2)^* &=& t_1^*[t_2^*/x] \end{array}$$

b) Show that \rightarrow_{β} is confluent by proving that $-^*$ is a Takahashi function for the parallel and nested reduction >.

Solution

a) Since ρ has the Takahashi-property, it follows that > has the diamond property: Let $s > t_1$ and $s > t_2$. Then, we have both $t_1 > \rho(s)$ and $t_2 > \rho(s)$. Like in the lecture, we have that

and since > has the diamond property it follows that \rightarrow is confluent.

b) We prove that $-^*$ has the Takahashi property, i.e.

$$s > t \implies t > s^*,$$

by $-^*$ computation induction on s for arbitrary t. In the following, we will skip instances of s > s, as we can easily prove $s > s^*$ by another structural induction on s.

1st case: s = x.

Assume x > t. Hence t = x. Thus $t = x > x = x^* = s^*$.

2nd case: $s = \lambda x$. s_1 .

(

Assume $\lambda x. s_1 > t$. Furthermore, we get the induction hypothesis $s_1 > t \Longrightarrow t > s_1^*$ for arbitrary t. By case analysis on the derivation of s > t we obtain $t = \lambda x. t_1$ for an appropriate t_1 and we have $s_1 > t_1$. This implies $t_1 > s_1^*$ considering the induction hypothesis. Thus we get $t = \lambda x. t_1 > \lambda x. s_1^* = (\lambda x. s_1)^* = s^*$.

3rd case: $s = s_1 s_2$, but s is not a β -redex.

Assume $s_1 \ s_2 > t$. As induction hypotheses we obtain $s_i > t \implies t > s_i^*$ for arbitrary t and $i \in \{1, 2\}$. Then $t = t_1 \ t_2$ with $s_1 > t_1$ and $s_2 > t_2$ (again this follows by case analysis using the inductive definition of >). We get the induction hypotheses $t_1 > s_1^*$ and $t_2 > s_2^*$. By the definition of > this implies $t = t_1 \ t_2 > s_1^* \ s_2^* = (s_1 \ s_2)^* = s^*$.

4th case: $s = (\lambda x. s_1) s_2$.

Assume $(\lambda x. s_1) s_2 > t$. Then there is t_1, t_2 with $s_1 > t_1$ and $s_2 > t_2$ and we have $t = (\lambda x. t_1) t_2$ or $t = t_1[t_2/x]$, depending on the rule used to derive s > t. Note that the first case actually requires a nested case distinction: first we consider the case that $t = t'_1 t_2$ by the third rule in the definition of >. This requires that $(\lambda x. s_1) > t'_1$. Hence, $t'_1 = (\lambda x. t_1)$ and $s_1 > t_1$ follows by another case distinction on $(\lambda x. s_1) > t'_1$.

Case 4.1 $t = (\lambda x. t_1) t_2$.

By the induction hypotheses $t_1 > s_1^*$ and $t_2 > s_2^*$, we get $t = (\lambda x. t_1) t_2 > s_1^*[s_2^*/x] = ((\lambda x. s_1) s_2)^* = s^*$.

Case 4.2
$$t = t_1[t_2/x]$$
.

By the induction hypotheses $t_1 > s_1^*$ and $t_2 > s_2^*$, and the substitution property of > (Lemma 1.2.13), we get $t = t_1[t_2/x] > s_1^*[s_2^*/x] = ((\lambda x. s_1) s_2)^* = s^*$.

A different proof is by structural induction on s for arbitrary t.

Case s = x.

Assume x > t. Hence t = x by case analysis on the x > t. Thus $t = x > x = x^* = s^*$.

Case $s = \lambda x$. s_1 .

Assume $\lambda x. s_1 > t$. Furthermore, we get the induction hypothesis $s_1 > t \Longrightarrow t > s_1^*$ for arbitrary t. By case analysis on the derivation of s > t we obtain $t = \lambda x. t_1$ for an appropriate t_1 and we have $s_1 > t_1$. This, together with the induction hypothesis, implies $t_1 > s_1^*$. Thus, we get $t = \lambda x. t_1 > \lambda x. s_1^* = (\lambda x. s_1)^* = s^*$.

Case $s = s_1 s_2$.

Assume $s_1 \ s_2 > t$. As induction hypotheses we obtain $s_i > t \Longrightarrow t > s_i^*$ for arbitrary t and $i \in \{1, 2\}$. Case analysis on the derivation of $s_1 \ s_2 > t$ yields two cases.

- We have $t = t_1 t_2$ and $s_1 > t_1$ as well as $s_2 > t_2$, or
- $s_1 = (\lambda x, s_3)$ and $t = t_1[t_2/x]$ as well as $s_3 > t_1$ and $s_2 > t_2$.

Case $t = t_1 t_2$.

From the induction hypotheses we have $t_1 > s_1^*$ and $t_2 > s_2^*$. This implies that $t = t_1 t_2 > s_1^* s_2^* = (s_1 s_2)^* = s^*$

Case $t = t_1[t_2/x]$.

We can only discharge the assumption of the second induction hypothesis which gives us $t_2 > s_2^*$. To obtain $t_1 > s_3^*$, we actually need an induction on the size of the term s — or a strong induction on the structure of s — such that the I.H. holds for all proper subterms of s (in particular s_3). Together with the substitution property of > (Lemma 1.2.13), we get $t = t_1[t_2/x] > s_3^*[s_2^*/x] = ((\lambda x. s_3) s_2)^* = s^*$.

Exercise 3 (Parallel Beta Reduction)

Show:

$$s > t \Longrightarrow s \to_{\beta}^{*} t$$

Solution

Proof by rule induction on >.

Case s > s: We have that s = t and $s \rightarrow_{\beta}^{*} s$.

- **Case** $\lambda x. s > \lambda x. s'$: As an induction hypothesis we get $s \to_{\beta}^{*} s'$. By Lemma 1.2.3 we obtain our goal $\lambda x. s \to_{\beta}^{*} \lambda x. s'$.
- **Case** $s \ t > s' \ t'$: As induction hypotheses we get $s \to_{\beta}^{*} s'$ and $t \to_{\beta}^{*} t'$. With Lemma 1.2.3 we get $s \ t \to_{\beta}^{*} s' \ t \to_{\beta}^{*} s' \ t'$ and therefore $s \ t \to_{\beta}^{*} s' \ t'$.
- **Case** $(\lambda x. s) \ t > s'[t'/x]$: As induction hypotheses we get $s \to_{\beta}^{*} s'$ and $t \to_{\beta}^{*} t'$. With Lemma 1.2.3 it holds that $(\lambda x. s) \ t \to_{\beta}^{*} (\lambda x. s') \ t \to_{\beta}^{*} (\lambda x. s') \ t' \to_{\beta} s'[t'/x]$ and thus $(\lambda x. s) \ t \to_{\beta}^{*} (\lambda x. s') \ t'$.

Homework 4 (Local Confluence of η -reduction)

Analogously to β -reduction, we define η -reduction inductively:

1. $x \notin \mathsf{FV}(s) \Longrightarrow (\lambda x. s \ x) \to_{\eta} s$ 2. $s \to_{\eta} s' \Longrightarrow s \ t \to_{\eta} s' t$ 3. $s \to_{\eta} s' \Longrightarrow t \ s \to_{\eta} t \ s'$ 4. $s \to_{\eta} s' \Longrightarrow (\lambda x. s) \to_{\eta} (\lambda x. s')$

The proof of local confluence of \rightarrow_{η} , i.e. it holds that there exists a u with $t_1 \rightarrow_{\eta}^* u_{\eta}^* \leftarrow t_2$ if we have $t_1 \sim_{\eta} \leftarrow s \rightarrow_{\eta} t_2$, was very informal. Give a proper proof using this definition.

Homework 5 (Parallel Beta Reduction & Substitution)

Show:

$$s > s' \wedge t > t' \Longrightarrow s[t/x] > s'[t'/x]$$

Homework 6 (A Takahashi function for combinatory logic)

Instead of the λ -calculus, we consider *combinatory logic* in this exercise whose syntax consists of variables, application, and the combinators K and S:

$$s,t$$
 ::= $x \in \mathbb{N}_0 \mid s t \mid \mathsf{K} \mid \mathsf{S}.$

We inductively define a reduction relation \rightarrow_w for this calculus with:

- 1. K $s t \rightarrow_{\mathsf{w}} s$
- 2. $S s t u \rightarrow_{w} s u (t u)$
- 3. $s \to_{\mathsf{w}} s' \Longrightarrow s t \to_{\mathsf{w}} s' t$
- 4. $t \to_{\mathsf{w}} t' \Longrightarrow s t \to_{\mathsf{w}} s t'$

Use the strategy from the tutorial to prove that \rightarrow_{w} is confluent by defining a parallel and nested reduction relation $>_{w}$ for this calculus and a Takahashi function $-^{*}$ for $>_{w}$.