Technische Universität München Institut für Informatik Prof. Tobias Nipkow, Ph.D. Lukas Stevens

Exercise 1 (Normal Forms)

Recall the inductive definition of the set NF of normal forms:

$$\frac{t \in \mathrm{NF}}{\lambda x. \ t \in \mathrm{NF}}$$

$$\underline{n \ge 0 \qquad t_1 \in \mathrm{NF} \qquad t_2 \in \mathrm{NF} \qquad \dots \qquad t_n \in \mathrm{NF}}$$

$$x \ t_1 \ t_2 \ \dots \ t_n \in \mathrm{NF}$$

Show that this set precisely captures all normal forms, i.e.:

$$t \in \mathrm{NF} \Leftrightarrow \nexists t'. \ t \to_{\beta} t'$$

Solution

Direction \implies : Proof by induction on the derivation of $t \in NF$.

Case $t = \lambda x$. $s \in NF$

We obtain the induction hypothesis $s \in NF \implies \nexists s'$. $s \rightarrow_{\beta} s'$. Suppose there exists an s' such that $\lambda x. s \rightarrow_{\beta} \lambda x. s'$. By rule inversion, it must hold that $s \rightarrow_{\beta} s'$ which is a contradiction to induction hypothesis where we discharge the assumption $s \in NF$ by rule inversion on $t \in NF$.

Case $t = x t_1 \ldots t_n \in NF$

By rule inversion on $t \in NF$ we get $t_i \in NF$ and therefore $\nexists t'$. $t_i \to_{\beta} t'$ by the IH for $1 \leq i \leq n$. We show this case by another induction on n. The case n = 0 is trivial. Now assume $\nexists t'$. $x t_1 t_2 \ldots t_n \to_{\beta} t'$ as the induction hypothesis, and $x t_1 t_2 \ldots t_n t_{n+1} \to_{\beta} t'$ for the sake of contradiction. By analysing the derivation of the latter, we can only conclude $\exists t' \cdot t_{n+1} \to_{\beta} t'$, which manifests a contradiction.

Direction \Leftarrow : We show $t \notin NF \Longrightarrow \exists t'. t \rightarrow_{\beta} t'$ by structural induction on t.

Case t = x

Then $t \in NF$ which is a contradiction to the assumption $t \notin NF$.

Case $t = \lambda x$. s

We assume that $t = \lambda x$. $s \notin NF$. Thus, it must hold that $s \notin NF$ by rule inversion, which together with the IH lets us obtain a s' where $s \to_{\beta} s'$. Hence, we conclude that λx . $s \to_{\beta} \lambda x$. s'.

Case $t = t_1 t_2$

We assume $t_1 \notin NF \implies \exists t'. t_1 \rightarrow_{\beta} t'$ and $t_2 \notin NF \implies \exists t'. t_2 \rightarrow_{\beta} t'$ as the induction hypothesis, and $t \notin NF$.

The cases where $t_1 \notin NF$ or $t_2 \notin NF$ are immediate by the induction hypotheses together with the definition of \rightarrow_{β} .

Consider the case $t_1, t_2 \in NF$. We analyze the derivation of $t_1 \in NF$.

Case $t_1 = x \ s_1 \ \dots \ s_n$ where $s_1, \dots, s_n \in NF$

It follows that $t = t_1 t_2 = x s_1 \ldots s_n t_2 \in NF$ since $t_2 \in NF$. But this is a contradiction to the assumption $t_1 t_2 \notin NF$.

Case $t_1 = (\lambda x. s)$ where $s \in NF$ Then it holds that $t = t_1 t_2 = (\lambda x. s) t_2 \rightarrow_{\beta} s[t_2/x].$

Exercise 2 (Weakly Normalising Terms)

Inductively define the set of weakly normalising terms WN, i.e. the set of terms that have a β -normal form. In particular it should hold that

$$s \in WN \iff \exists t. \ s \Rightarrow_n t.$$

Similarly, define the set of strongly normalising terms SN where a term s is strongly normalising if there is no infinite sequence $\{t_i \mid i \in \mathbb{N}\}$ with $s \to_{\beta}^{*} t_0$ and $t_i \to_{\beta} t_{i+1}$ for $i \in \mathbb{N}$.

Give a term t that is weakly but not strongly normalising.

Solution

We define WN as follows:

- 1. $t_1, \ldots, t_m \in WN \Longrightarrow x \ t_1 \ \ldots \ t_m \in WN$
- 2. $t \in WN \Longrightarrow \lambda x. t \in WN$
- 3. $s[t/x] t_1 \ldots t_m \in WN \Longrightarrow (\lambda x. s) t t_1 \ldots t_m \in WN$

The definition of SN is identical with exception of the last rule where we also demand that $t \in SN$.

Let $\omega := (\lambda x. x x)$. Then, it holds that $(\lambda x. y) (\omega \omega) \in WN \setminus SN$.

Homework 3 (Normal Forms & Big Step)

Show:

$$t \in \mathrm{NF} \land t \Rightarrow_n u \Longrightarrow u = t$$

Homework 4 (Characterisation of WN)

Prove the following characterisation of WN:

$$t \in WN \iff \exists t'. t \rightarrow^*_{\beta} t' \land t' \in NF$$

You may use the fact that

 $s \in WN \iff \exists t. \ s \Rightarrow_n t$

and all theorems up to Theorem 1.5.8 from the lecture.