Exercise 1 (Progress Property)

Let t be a closed and well-typed term, i.e. [] $\vdash t: \tau$ for some τ. Show that t is either a value or there is a t^{\prime} such that $t \rightarrow_{c b v} t^{\prime}$.

Solution

The proof follows an induction on the derivation of [] $\vdash t: \tau$.
Case [] $\vdash x: \tau$
This case cannot occur since x does not have a type in the empty environment.
Case []$\vdash(\lambda x . s): \tau_{1} \rightarrow \tau_{2}$
Then, $(\lambda x . s)$ is already a value.
Case [] $\vdash t_{1} t_{2}: \tau_{2}$ where []$\vdash t_{1}: \tau_{1} \rightarrow \tau_{2}$ and []$\vdash t_{2}: \tau_{1}$
By the induction hypothesis, both t_{1} and t_{2} can take a step or are a value. If t_{1} can take a step, we can use the left application rule on t. If t_{1} is a value and t_{2} can take a step, then the right application rule can be used. If t_{1} and t_{2} are both values, we know $t_{1}=\lambda x$. t_{1}^{\prime} for some t_{1}^{\prime} as t_{1} is of type $\tau_{1} \rightarrow \tau_{2}$. Thus we can apply the rule for reducing an abstraction.

Exercise 2 (Normal Form)

Show that every type-correct $\lambda \rightarrow$-term has a β-normal form.

Solution

We prove the statement by coming up with a terminating reduction relation \rightarrow_{p} that, when repeatedly applied, reduces a given term to β-normal form. Furthermore, we define a well-founded order $<_{T}$ on terms and show that $t_{1} \rightarrow_{p} t_{2}$ implies $t_{1}<_{T} t_{2}$. By induction on $<_{T}$ it then follows that \rightarrow_{p} is terminating.
The reduction strategy is chosen such that it decreases the types of subterms.
Let $|\tau|$ be the size of a type τ, i.e. the number of function-arrows occuring in τ.

$$
\begin{aligned}
& |\alpha|=0 \\
& |\alpha \rightarrow \beta|=|\alpha|+|\beta|+1
\end{aligned}
$$

With this measure, we can assign a natural number to each β-redex:

$$
|(\lambda x . s) t|^{\Gamma}=\left|\tau_{1} \rightarrow \tau_{2}\right| \quad \text { where } \quad \Gamma \vdash(\lambda x . s): \tau_{1} \rightarrow \tau_{2}
$$

We assign each term t a multiset M_{t}. In order to account for the potentially non-empty environment Γ in the subterms of t, we first define M_{t}^{Γ} recursively and then set $M_{t}:=M_{t}^{[]}$.

$$
\begin{aligned}
& t=u v \Longrightarrow M_{t}^{\Gamma}=M_{u}^{\Gamma} \cup M_{v}^{\Gamma} \cup\left\{|u v|^{\Gamma} . u v \text { is a } \beta \text {-redex }\right\} \\
& t=(\lambda x . s) \Longrightarrow \Gamma \vdash(\lambda x . s): \tau_{1} \rightarrow \tau_{2} \Longrightarrow M_{t}^{\Gamma}=M_{s}^{\Gamma\left[x: \tau_{1}\right]} \\
& t=x \Longrightarrow M_{t}=\{ \}
\end{aligned}
$$

We can view multisets as functions into the natural numbers and define an ordering on them:

$$
\begin{aligned}
M<_{M} N \Longleftrightarrow & M \neq N \wedge \\
& (\forall y . M(y)>N(y) \Longrightarrow(\exists x . x>y \wedge M(x)<N(x)))
\end{aligned}
$$

It can be proved that the multiset ordering terminates (is well-founded). The ordering naturally extends to terms, i.e. $u<_{T} v \Longleftrightarrow M_{u}<_{M} M_{v}$.

If one regards a β-redex of the form $r=(\lambda x . u) v$ with $\Gamma \vdash r: \tau$ and u and v in $\beta-\mathrm{NF}$, then we have $M_{r}>_{M} M_{r^{\prime}}$ for the reduct $r^{\prime}=u[v / x]$.

This is because although the substitution may create new β-redexes w, we have $|w|<|r|$ for all those w in r^{\prime} :

Note that $\Gamma \vdash(\lambda x . u): \tau_{1} \rightarrow \tau_{2}$ and $\Gamma \vdash v: \tau_{2}$ for some τ_{1}, τ_{2} must hold.
Since $v \in \mathrm{NF}, w$ is of the form $\left(v v^{\prime}\right)$ with $v=(\lambda x . s)$ for some s
and thus $|w|=\left|\tau_{1}\right|<\left|\tau_{1} \rightarrow \tau_{2}\right|=|r|$.
Thus, if we choose a reduction strategy \rightarrow_{p} that reduces an innermost β-redex in t, we have:

$$
t \rightarrow_{p} t^{\prime} \Longrightarrow M_{t}>_{M} M_{t^{\prime}}
$$

We can obtain such a reduction strategy by restricting the first rule of \rightarrow_{β} to:

$$
\frac{s \in \mathrm{NF} \quad t \in \mathrm{NF}}{(\lambda x . s) t \rightarrow_{p} s[t / x]}
$$

As the multiset ordering terminates, also the chosen reduction strategy must terminate. If it terminates with t^{\prime}, then t^{\prime} is in β-NF because otherwise t^{\prime} would contain a regex and therefore an innermost regex that can be reduces with \rightarrow_{p}.

Homework 3 (Typing)

a) Prove:

$$
[] \vdash\left(\lambda x: \tau_{2} \rightarrow \tau_{3} . \lambda y: \tau_{1} \rightarrow \tau_{2} . \lambda z: \tau_{1} . x(y z)\right):\left(\tau_{2} \rightarrow \tau_{3}\right) \rightarrow\left(\tau_{1} \rightarrow \tau_{2}\right) \rightarrow \tau_{1} \rightarrow \tau_{3}
$$

b) Give suitable solutions for $? \tau_{1}, ? \tau_{2}, ? \tau_{3}$ and $? \tau_{4}$ and prove that the term is type-correct given your solution.

$$
[] \vdash \lambda x: ? \tau_{1} . \lambda y: ? \tau_{2} . \lambda z: ? \tau_{3} . \quad x y(y z): ? \tau_{4}
$$

Homework 4 (β-reduction preserves types)

A type system has the subject reduction property if evaluating an expression preserves its type. Prove that the simply typed λ-calculus $\left(\lambda^{\rightarrow}\right)$ has the subject reduction property:

$$
\Gamma \vdash t: \tau \wedge t \rightarrow_{\beta} t^{\prime} \Longrightarrow \Gamma \vdash t^{\prime}: \tau
$$

Hints: Use induction over the inductive definition of \rightarrow_{β} (Def. 1.2.2). State your inductive hypotheses precisely - it may help to introduce a binary predicate $P\left(t, t^{\prime}\right)$ to express the property you are proving by induction. Also note that the proof will require rule inversion: Given $\Gamma \vdash t: \tau$, the shape of t (variable, application, or λ-abstraction) may determine which typing rule must have been used to derive the typing judgment.

Within your proof, you are free to use the following lemma about substitution:

$$
\begin{equation*}
\Gamma \vdash u: \tau_{0} \wedge \Gamma\left[x: \tau_{0}\right] \vdash t: \tau \Longrightarrow \Gamma \vdash t[u / x]: \tau \tag{1}
\end{equation*}
$$

Homework 5 (Implementation of multiset-ordering and reduction)

Implement the multiset ordering and the reduction strategy from the second tutorial exercise in your favorite programming language.

