
Technische Universität München Lambda Calculus
Institut für Informatik Winter Term 2023/24
Prof. Tobias Nipkow, Ph.D. Solutions to Exercise Sheet 10
Lukas Stevens

Exercise 1 (Example of Type Inference for let)

Consider the typing problem

x : α ⊢ let y = λz. z x in y (λv. x) : ?τ

where α is a type variable.

a) Find the most general type schema σ with x : α ⊢ λz. z x : σ and draw a type
derivation tree.

b) Draw the type derivation tree for

y : σ, x : α ⊢ y (λv. x) : ?τ

with the correct type for ?τ .

Solution

a) σ = ∀β. (α → β) → β. Typing derivation:

Var
z : α → β, x : α ⊢ z : α → β

Var
z : α → β, x : α ⊢ x : α

App
z : α → β, x : α ⊢ z x : β

Abs
x : α ⊢ λz. z x : (α → β) → β

∀Intro
x : α ⊢ λz. z x : ∀β. (α → β) → β

b) Typing derivation:

Var
y : σ, x : α ⊢ y : ∀β. (α → β) → β

∀Elim
y : σ, x : α ⊢ y : (α → α) → α

Var
v : α, y : σ, x : α ⊢ x : α

Abs
y : σ, x : α ⊢ (λv. x) : α → α

App
y : σ, x : α ⊢ y (λv. x) : α

Exercise 2 (Recursive let)

Recursive let expressions are one way (besides Y -combinators) to add recursion to λ→.

t ::= x | (t1 t2) | (λx. t) | letrec x = t1 in t2

a) Modify the standard typing rule for let to create a suitable rule for letrec.

b) Considering type inference, what is the problematic property of this rule compared
to the rule for let?

1

Solution

a) The rule for letrec is like the rule for let, but we also add x to Γ when checking
t1.

Γ[x : σ1] ⊢ t1 : σ1 Γ[x : σ1] ⊢ t2 : σ2

Γ ⊢ (letrec x = t1 in t2) : σ2

LetRec

Alternatively, we can combine this rule with the ∀-intro typing rule:

{α1 . . . αn} = FV (τ) \ FV (Γ)
Γ[x : ∀α1 . . . αn. τ] ⊢ t1 : τ Γ[x : ∀α1 . . . αn. τ] ⊢ t2 : τ2

Γ ⊢ letrec x = t1 in t2 : τ2
LetRec’

b) The interesting property of this new typing rule is that we cannot know which
α1 . . . αn we need to generalize τ over before we have inferred τ (the type of t1).
Thus, typical compilers will only allow x to be used monomorphically in t1. Alter-
natively, the user can explicitly specify a type schema for x, so that it can be used
polymorphically.

Exercise 3 (Type Inference in Haskell (2))

Extend the implementation of the type inference algorithm from the last exercise with let

and letrec constructs.

You can find a template here.

Solution

See type inference let sol.hs.

2

https://www21.in.tum.de/teaching/lambda/WS23/assets/type_inference_let.hs
https://www21.in.tum.de/teaching/lambda/WS23/assets/type_inference_let_sol.hs

Homework 4 (Fixed-point combinator)

Let
$ = λabcdefghijklmnopqstuvwxyzr. r(thisisafixedpointcombinator)

and
e = $$$$$$$$$$$$$$$$$$$$$$$$$$.

Show that e is a fixed-point combinator.

Homework 5 (let-Polymorphism)

Give a derivation tree for the following statement, and so determine the type τ :

[z : τ0] ⊢ let x = λy z. z y y in x (x z) : τ

Homework 6 (Towards Syntax-Directed let-Polymorphism)

In the lecture, it was claimed that the systems DM and DM ′, which, in contrast to DM ,
has explicit rules ∀Intro and ∀Elim, are essentially equivalent. More specifically, it was
claimed that

Γ ⊢DM t : σ =⇒ ∃τ. Γ ⊢DM ′ t : τ ∧ gen(Γ, τ) ⪯ σ.

As a step towards proving this result, we want to rearrange derivations in DM such that
they resemble derivations in DM ′. In particular, prove that

a) Any derivation Γ ⊢DM t : σ can be transformed such that ∀Elim only occur in a
chain below the Var rule, i.e.

Var
Γ ⊢ x : ∀α1, . . . , αn. τ ∀Elim... ∀Elim

Γ ⊢ x : ∀αn. τ ∀Elim
Γ ⊢ x : τ

...

b) Any derivation Γ ⊢DM t : σ can be transformed such that ∀Intro only occur in a
chain that is terminated by an application of the Let rule or by the end of the proof,
i.e.

...
Γ ⊢ t1 : τ∀Intro

Γ ⊢ t1 : ∀αn. τ∀Intro ...∀Intro
Γ ⊢ t1 : ∀α1, . . . , αn. τ

...
Γ[x : ∀α1, . . . , αn. τ] ⊢ t2 : σ

Let
Γ ⊢ let x = t1 in t2 : σ

or

3

...
Γ ⊢ t1 : τ ∀Intro

Γ ⊢ t1 : ∀αn. τ ∀Intro... ∀Intro
Γ ⊢ t1 : ∀α1, . . . , αn. τ

4

