First-Order Logic

Compactness

[Harrison, Section 3.16]
Recall Gödel-Herbrand-Skolem:

Theorem

Let F be a closed formula in Skolem form. Then F is satisfiable iff its Herbrand expansion $E(F)$ is (propositionally) satisfiable.

Can easily be generalized:

Theorem (1)

Let S be a set of closed formulas in Skolem form. Then S is satisfiable iff $E(S)$ is (propositionally) satisfiable.
Transforming sets of formulas

Recall the transformation of single formulas into equisatisfiable Skolem form: close, RPF, skolemize

Theorem (2)
Let S be a countable set of closed formulas. Then we can transform it into an equisatisfiable set T of closed formulas in Skolem form.
We call this transformation function skolem.

- Can all formulas in S be transformed in parallel?
- Why countable?
Transforming sets of formulas

1. Put all formulas in S into RPF.

 Problem in Skolemization step: How do we generate new function symbols if all of them have been used already in S?

2. Rename all function symbols in S: $f^k_i \mapsto f^k_{2i}$

 The result: equisatisfiable countable set $\{F_0, F_1, \ldots \}$.

 Unused symbols: all f^k_{2i+1}

3. Skolemize the F_i one by one using the f^k_{2i+1} not used in the Skolemization of F_0, \ldots, F_{i-1}

 Result is equisatisfiable with initial S.

Compactness

Theorem

Let S be a countable set of closed formulas. If every finite subset of S is satisfiable, then S is satisfiable.

Proof

every fin. $F \subseteq S$ is sat.

\Rightarrow every fin. $F \subseteq \text{skolem}(S)$ is sat. by Theorem (2)

\quad (fin. $F \subseteq \text{skolem}(S) \Rightarrow F \subseteq \text{skolem}(S_0)$ for some fin. $S_0 \subseteq S$)

\Rightarrow for every fin. $F \subseteq \text{skolem}(S)$, $E(F)$ is prop. sat. by Theorem(1)

\Rightarrow every fin. $F' \subseteq E(\text{skolem}(S))$ is prop. sat.

\quad (there must exist a fin. $F \subseteq \text{skolem}(S)$ s.t. $F' \subseteq E(F)$)

$\Rightarrow E(\text{skolem}(S))$ is prop. sat. by prop. compactness

$\Rightarrow \text{skolem}(S)$ is sat. by Theorem (1)

$\Rightarrow S$ is sat. by Theorem (2)