LOGIC EXERCISES

TECHNICAL UNIVERSITY OF MUNICH CHAIR FOR LOGIC AND VERIFICATION

Prof. Tobias Nipkow Kevin Kappelmann

SS 2021

Exercise Sheet 1

16.04.2021

Here is a website for syntax trees and truth tables.

Exercise 1.1. [Hello Logic]

Discuss: What does logic mean to you? Is it worth studying? Why? Why not? Where do we use logic? How did it come into being? What makes logic special?

Exercise 1.2. [Basics]

Let M be a set of formulas, and let F and G be formulas. Which of the following assertions hold?

- 1. If F satisfiable then $M \models F$
- 2. F is valid iff $\top \models F$
- 3. If $\models F$ then $M \models F$
- 4. If $M \models F$ then $M \cup \{G\} \models F$
- 5. $M \models F$ and $M \models \neg F$ cannot hold simultaneously
- 6. If $M \models G \rightarrow F$ and $M \models G$ then $M \models F$

Solution:

Assertions 2, 3, 4, and 6 hold.

For 4 note that $M \models F$ iff $\forall A$. $(\forall H \in M. A \models H) \implies A \models F$.

Counterexample for 1: $F = A_1, M = \{A_2\}$

Counterexample for 5: $M = \{\bot\}$ (ex falso quodlibet)

Exercise 1.3. [Coincidence Lemma]

Assume that for all atomic formulas A_i in F, $\mathcal{A}(A_i) = \mathcal{A}'(A_i)$. Show that

$$\mathcal{A} \models F \text{ iff } \mathcal{A}' \models F$$

Solution:

Proof by induction over the structure of F. Let atoms(F) denote the set of all atomic formulas A_i in a formula F.

- Case $F = A_i$ for some $i: A \models A_i \iff \mathcal{A}(A_i) = 1 = \mathcal{A}'(A_i) \iff \mathcal{A}' \models A_i$ (equality of assignments by assumption)
- Case $F = \neg G$ for some G:

IH: $\mathcal{A} \models G \iff \mathcal{A}' \models G$

Proof: $\mathcal{A} \models \neg G \iff \mathcal{A} \not\models G \stackrel{IH}{\iff} \mathcal{A}' \not\models G \iff \mathcal{A}' \models \neg G$

• Case $F = G \wedge H$ for some G, H:

Observation: $atoms(F) = atoms(G) \cup atoms(H)$

Hence, \mathcal{A} and \mathcal{A}' coincide on G and H too.

We can thus obtain:

IH 1: $\mathcal{A} \models G$ iff $\mathcal{A}' \models G$

IH 2: $A \models H$ iff $A' \models H$

Remaining proof trivial.

Exercise 1.4. [Anti-Interpolant]

Assume F and G do not share any atoms. Show that if $\models F \rightarrow G$ then F is unsatisfiable or G is a tautology (or both). *Hint:* you may want to use the previous result.

Solution:

Proof by contraposition. Assume that F is satisfiable and G is not a tautology. Obtain assignments \mathcal{A}_F and \mathcal{A}_G such that $\mathcal{A}_F \models F$ and $\mathcal{A}_G \not\models G$. Construct a new assignment \mathcal{A} as follows:

$$\mathcal{A}(A_i) = \begin{cases} \mathcal{A}_F(A_i) & \text{if } A_i \in atoms(F) \\ \mathcal{A}_G(A_i) & \text{if } A_i \in atoms(G) \\ 0 & \text{otherwise} \end{cases}$$

This is well-defined, because $atoms(F) \cap atoms(G) = \emptyset$. \mathcal{A} coincides with \mathcal{A}_F on F and with \mathcal{A}_G on G. By the coincidence lemma, $\mathcal{A} \models F$ and $\mathcal{A} \not\models G$. Hence $\mathcal{A} \not\models F \to G$ and thus $\not\models F \to G$.

Exercise 1.5. [Sense and Reference]

Pick an assignment \mathcal{W} . Call this assignment the world. Now pick a formula F. Then either $\mathcal{W} \models F \leftrightarrow \top$ or $\mathcal{W} \models F \leftrightarrow \bot$. Hence, each formula F under \mathcal{W} is equal to \top or \bot .

Discuss: Do you agree? For example, should we treat $F \vee \neg F$ as being equal to \top ? Do both hold the same cognitive value?

Homework: Homework exercises will not be graded. Rather, you can ask for help and discuss the exercises and your solutions on Zulip.

Homework 1.1. [CNF and DNF]

(+)

Use the rewriting-based procedure from the lecture to convert the following formulas F and G first to NNF, and then to CNF and DNF. Document each rewriting step.

$$F = \neg \neg (\neg A_1 \land \neg \neg (A_2 \lor A_3)) \qquad G = (A_1 \lor A_2 \lor A_3) \land (\neg A_1 \lor \neg A_2)$$

Solution:

Algorithmic.

Homework 1.2. [Basic equivalences]

(+)

Let F and G be formulas. Are the following statements equivalent? Proof or counterexample!

- $1. \models F \leftrightarrow G$
- 2. $F \equiv G$

What is the difference between $F \leftrightarrow G$ and $F \equiv G$?

How about these two statements? Prove or disprove!

- 1. F is valid
- 2. $F \equiv \top$

Solution:

They are equivalent: Assume $\models F \leftrightarrow G$ and let \mathcal{A} be arbitrary. By assumption, either $\mathcal{A}(F \wedge G)$ or $\mathcal{A}(\neg F \wedge \neg G)$. In any case, $\mathcal{A}(F) = \mathcal{A}(G)$ and hence $F \equiv G$; other direction similar.

 $F \leftrightarrow G$ is a formula of propositional logic while $F \equiv G$ is a mathematical statement about two propositional formulas.

The final two statements are also equivalent.

Homework 1.3. [Efficient CNF satisfiability check]

(++)

In general, solving satisfiability for CNF formula is a hard problem. Consider the special case where clauses may only contain up to two literals. Give a polynomial time algorithm to check for satisfiability.

Solution:

See here.

Homework 1.4. [Craig-Interpolant]

(+++)

Let F and G be arbitrary formulas with $F \models G$. Show that there is a formula H mentioning only propositional variables occurring in both F and G such that $F \models H$ and $H \models G$.

Solution:

Let Var(F) and Var(G) be the sets of propositional variables appearing in F and G, respectively. A truth table over the set of variables $Var(F) \cap Var(G)$ has a line for each assignment with domain $Var(F) \cap Var(G)$. Consider such a table for which the line corresponding to an assignment \mathcal{A} has entry 1 iff \mathcal{A} extends to a model \mathcal{A}' on Var(F) of F. Let H be a formula over variables $Var(F) \cap Var(G)$ that realises the above truthtable (e.g. take the CNF of the table).

Clearly, $F \models H$ (hint: take an assignment of F and consider its restriction to $Var(F) \cap Var(G)$).

To show that $H \models G$, suppose that \mathcal{A} is a model of H. Then, by construction of H, there is an assignment \mathcal{A}' which differs from \mathcal{A} only on $Var(F) \setminus Var(G)$ such that $\mathcal{A}'(F) = 1$. Since $F \models G$, we have $\mathcal{A}'(G) = 1$. Since \mathcal{A} and \mathcal{A}' agree on Var(G), we have $\mathcal{A}(G) = 1$.

There can be no doubt that the knowledge of logic is of considerable practical importance for everyone who desires to think and infer correctly.

— Alfred Tarski