Technical University of Munich

Prof. Tobias Nipkow
Kevin Kappelmann
SS 2021

Here is a website for syntax trees and truth tables.

Exercise 1.1. [Hello Logic]

Discuss: What does logic mean to you? Is it worth studying? Why? Why not? Where do we use logic? How did it come into being? What makes logic special?

Exercise 1.2. [Basics]

Let M be a set of formulas, and let F and G be formulas. Which of the following assertions hold?

1. If F satisfiable then $M \models F$
2. F is valid iff $\top \models F$
3. If $\models F$ then $M \models F$
4. If $M \models F$ then $M \cup\{G\} \models F$
5. $M \models F$ and $M \models \neg F$ cannot hold simultaneously
6. If $M \models G \rightarrow F$ and $M \models G$ then $M \models F$

Solution:

Assertions 2, 3, 4, and 6 hold.
For 4 note that $M \models F$ iff $\forall \mathcal{A} .(\forall H \in M . \mathcal{A} \models H) \Longrightarrow \mathcal{A} \models F$.
Counterexample for 1: $F=A_{1}, M=\left\{A_{2}\right\}$
Counterexample for 5: $M=\{\perp\}$ (ex falso quodlibet)

Exercise 1.3. [Coincidence Lemma]

Assume that for all atomic formulas A_{i} in $F, \mathcal{A}\left(A_{i}\right)=\mathcal{A}^{\prime}\left(A_{i}\right)$. Show that

$$
\mathcal{A} \models F \text { iff } \mathcal{A}^{\prime} \models F
$$

Solution:

Proof by induction over the structure of F. Let $\operatorname{atoms}(F)$ denote the set of all atomic formulas A_{i} in a formula F.

- Case $F=A_{i}$ for some $i: \mathcal{A} \models A_{i} \Longleftrightarrow \mathcal{A}\left(A_{i}\right)=1=\mathcal{A}^{\prime}\left(A_{i}\right) \Longleftrightarrow \mathcal{A}^{\prime} \models A_{i}$ (equality of assignments by assumption)
- Case $F=\neg G$ for some G :
$\mathrm{IH}: \mathcal{A} \models G \Longleftrightarrow \mathcal{A}^{\prime} \models G$
Proof: $\mathcal{A} \models \neg G \Longleftrightarrow \mathcal{A} \not \models G \stackrel{I H}{\Longleftrightarrow} \mathcal{A}^{\prime} \not \models G \Longleftrightarrow \mathcal{A}^{\prime} \models \neg G$
- Case $F=G \wedge H$ for some G, H :

Observation: atoms $(F)=\operatorname{atoms}(G) \cup \operatorname{atoms}(H)$
Hence, \mathcal{A} and \mathcal{A}^{\prime} coincide on G and H too.
We can thus obtain:
IH 1: $\mathcal{A} \models G$ iff $\mathcal{A}^{\prime} \models G$
IH 2: $\mathcal{A} \models H$ iff $\mathcal{A}^{\prime} \models H$
Remaining proof trivial.

Exercise 1.4. [Anti-Interpolant]

Assume F and G do not share any atoms. Show that if $\models F \rightarrow G$ then F is unsatisfiable or G is a tautology (or both). Hint: you may want to use the previous result.

Solution:

Proof by contraposition. Assume that F is satisifiable and G is not a tautology. Obtain assignments \mathcal{A}_{F} and \mathcal{A}_{G} such that $\mathcal{A}_{F} \models F$ and $\mathcal{A}_{G} \not \vDash G$. Construct a new assignment \mathcal{A} as follows:

$$
\mathcal{A}\left(A_{i}\right)=\left\{\begin{array}{lr}
\mathcal{A}_{F}\left(A_{i}\right) & \text { if } A_{i} \in \operatorname{atoms}(F) \\
\mathcal{A}_{G}\left(A_{i}\right) & \text { if } A_{i} \in \operatorname{atoms}(G) \\
0 & \text { otherwise }
\end{array}\right.
$$

This is well-defined, because $\operatorname{atoms}(F) \cap \operatorname{atoms}(G)=\emptyset$. \mathcal{A} coincides with \mathcal{A}_{F} on F and with \mathcal{A}_{G} on G. By the coincidence lemma, $\mathcal{A} \neq F$ and $\mathcal{A} \not \vDash G$. Hence $\mathcal{A} \not \vDash F \rightarrow G$ and thus $\neq F \rightarrow G$.

Exercise 1.5. [Sense and Reference]

Pick an assignment \mathcal{W}. Call this assignment the world. Now pick a formula F. Then either $\mathcal{W} \vDash F \leftrightarrow \top$ or $\mathcal{W} \models F \leftrightarrow \perp$. Hence, each formula F under \mathcal{W} is equal to \top or \perp.
Discuss: Do you agree? For example, should we treat $F \vee \neg F$ as being equal to T ? Do both hold the same cognitive value?

Homework: Homework exercises will not be graded. Rather, you can ask for help and discuss the exercises and your solutions on Zulip.

Homework 1.1. [CNF and DNF]

Use the rewriting-based procedure from the lecture to convert the following formulas F and G first to NNF, and then to CNF and DNF. Document each rewriting step.

$$
F=\neg \neg\left(\neg A_{1} \wedge \neg \neg\left(A_{2} \vee A_{3}\right)\right) \quad G=\left(A_{1} \vee A_{2} \vee A_{3}\right) \wedge\left(\neg A_{1} \vee \neg A_{2}\right)
$$

Solution:

Algorithmic.
Homework 1.2. [Basic equivalences]
Let F and G be formulas. Are the following statements equivalent? Proof or counterexample!

1. $\models F \leftrightarrow G$
2. $F \equiv G$

What is the difference between $F \leftrightarrow G$ and $F \equiv G$?
How about these two statements? Prove or disprove!

1. F is valid
2. $F \equiv \top$

Solution:

They are equivalent: Assume $\models F \leftrightarrow G$ and let \mathcal{A} be arbitrary. By assumption, either $\mathcal{A}(F \wedge G)$ or $\mathcal{A}(\neg F \wedge \neg G)$. In any case, $\mathcal{A}(F)=\mathcal{A}(G)$ and hence $F \equiv G$; other direction similar.
$F \leftrightarrow G$ is a formula of propositional logic while $F \equiv G$ is a mathematical statement about two propositional formulas.
The final two statements are also equivalent.
Homework 1.3. [Efficient CNF satisfiability check]
In general, solving satisfiability for CNF formula is a hard problem. Consider the special case where clauses may only contain up to two literals. Give a polynomial time algorithm to check for satisfiability.

Solution:

See here.

Homework 1.4. [Craig-Interpolant]

Let F and G be arbitrary formulas with $F \models G$. Show that there is a formula H mentioning only propositional variables occuring in both F and G such that $F \models H$ and $H \models G$.

Solution:

Let $\operatorname{Var}(F)$ and $\operatorname{Var}(G)$ be the sets of propositional variables appearing in F and G, respectively. A truth table over the set of variables $\operatorname{Var}(F) \cap \operatorname{Var}(G)$ has a line for each assignment with domain $\operatorname{Var}(F) \cap \operatorname{Var}(G)$. Consider such a table for which the line corresponding to an assignment \mathcal{A} has entry 1 iff \mathcal{A} extends to a model \mathcal{A}^{\prime} on $\operatorname{Var}(F)$ of F. Let H be a formula over variables $\operatorname{Var}(F) \cap \operatorname{Var}(G)$ that realises the above truthtable (e.g. take the CNF of the table).
Clearly, $F \models H$ (hint: take an assignment of F and consider its restriction to $\operatorname{Var}(F) \cap$ $\operatorname{Var}(G))$.
To show that $H \models G$, suppose that \mathcal{A} is a model of H. Then, by construction of H, there is an assignment \mathcal{A}^{\prime} which differs from \mathcal{A} only on $\operatorname{Var}(F) \backslash \operatorname{Var}(G)$ such that $\mathcal{A}^{\prime}(F)=1$. Since $F \models G$, we have $\mathcal{A}^{\prime}(G)=1$. Since \mathcal{A} and \mathcal{A}^{\prime} agree on $\operatorname{Var}(G)$, we have $\mathcal{A}(G)=1$.

There can be no doubt that the knowledge of logic is of considerable practical importance for everyone who desires to think and infer correctly.

- Alfred Tarski

