
Technical University of Munich
Chair for Logic and Verification

Prof. Tobias Nipkow
Kevin Kappelmann

Logic Exercises

SS 2021 Exercise Sheet 2 21.04.2021

Exercise 2.1. [¡Viva La Resolutión!]

1. We learnt that resolution is a decision procedure for the unsatisfiability problem of
CNF formulas. Explain: what does it mean for an algorithm A : U → {0, 1} to be a
“decision procedure” for a problem class P ⊆ U?

2. Let S be a set of clauses and C be a clause. Does S |= C imply S `Res C? Proof or
counterexample!

3. Can you prove S |= C by resolution?

Solution:

1. A decision procedure must be

(a) sound: if A(p) answers 1 then p ∈ P .

(b) complete: if p ∈ P then A(p) answers 1.

(c) terminating: A terminates on any input.

2. Counterexample: S := ∅, C := {{A,¬A}}
3. Yes: S |= C iff S,¬C |= ⊥ iff S ∪ {¬C} is unsatisfiable iff S,¬C `Res �

Exercise 2.2. [Resolution of Horn-Clauses]
Can the resolvent of two Horn-clauses be a non-Horn clause?

Solution:
No. Proof: Let C1, C2 be two Horn clauses. Both of them have at most one positive literal.
Without loss of generality, let Ai be the positive literal occuring in C1 that we resolve on.
Hence, ¬Ai must occur in C2. The resolvent is C ′ = (C1 \ {Ai}) ∪ (C2 \ {¬Ai}). We count
the positive literals: None in (C1 \ {Ai}) and at most one in (C2 \ {¬Ai}). Hence, there is
at most one positive literal in C ′, i.e. C ′ is horn.

Exercise Sheet 2 Logic Page 2

Exercise 2.3. [The clause is trivial and left as an exercise]
We call a clause C trivially true if Ai ∈ C and ¬Ai ∈ C for some atom Ai. Show that
the resolution algorithm remains complete if it does not consider trivially true clauses for
resolution.

Solution:
First we prove a lemma: If S is unsatisfiable and contains a trivially true clause C, then
S ′ = S\C is still unsatisfiable. Proof by contraposition. Assume S\C is satisfiable. Because
C is trivially satisfiable, (S \ C) ∪ C = S is satisfiable.

Assume that S is unsatisfiable. We modify the completeness proof of resolution presented
in the lecture. Recall that the proof proceeds by induction on the number of atoms in S.
We strengthen the induction by mandating that S contains no trivially true clauses. The
base case is trivial. If S is an unsatisfiable set of clauses containing n + 1 atoms, we first
use the previous lemma to remove all trivial clauses from S. Then we construct S0 and S1

by setting An+1 to 0 and 1, respectively. Both S0 and S1 are unsatisfiable and contain no
trivial clauses. By the inductive hypothesis, we obtain resolution proofs such that S0 `Res’ �
and S1 `Res’ �, where Res’ is our resolution procedure that does not consider trivial clauses.
Finally, constructing the resolution proof for S from these proofs (as done in the lecture)
introduces no new trivial clauses: in both cases, we either add back An+1 or ¬An+1 but not
both.

Exercise 2.4. [Finite Axiomatisation]
Let S0 and S be sets of formulas. S0 is called an axiom schema for S if for all assignments
A, A |= S0 iff A |= S.

A set S is called finitely axiomatisable iff there is a finite axiom schema for S.

1. Are all sets of formulas finitely axiomatisable? Proof or disprove!

2. Let S = {Fi | i ∈ N} be a set of formulas such that for all i, Fi+1 |= Fi and Fi 6|= Fi+1.
Is S finitely axiomatisable?

Solution:

1. Counterexample: S := {A1, A1 ∧A2, A1 ∧A2 ∧A3, . . .}. Assume there is a finite axiom
schema S0. S0 can only contain finitely many atoms. Let A be an assignment that
maps all Ai in S0 to 1, but all other Ai to 0. Then A |= S0 but A 6|= S.

2. The same counterexample as above works here.

Exercise 2.5. [What’s Semantics Anyway?]
Discuss: Can you think of other ways to give a semantic interpretation of propositional
formulas than the one introduced in the lecture? What makes for a good semantic interpre-
tation? What makes for a good model of a set of axioms?

Exercise Sheet 2 Logic Page 3

Homework 2.1. [by auto] (+)
Use the resolution procedure to decide if the following formulas are satisfiable. Show your
work (by giving the corresponding DAG or linear derivation)!

1. (A1 ∨ A2 ∨ ¬A3) ∧ ¬A1 ∧ (A1 ∨ A2 ∨ A3) ∧ (A1 ∨ ¬A2)

2. (¬A1 ∨ A2) ∧ (¬A2 ∨ A3) ∧ (A1 ∨ ¬A3) ∧ (A1 ∨ A2 ∨ A3)

Solution:
Algorithmic

Homework 2.2. [Model Extraction] (+++)
In the lecture, you proved completeness of propositional resolution (if F 6`Res � then F is
satisfiable) in a way that does not directly give raise to a model of F . In practice, however,
it is of course very useful to obtain such a model.

On slide 15 of the Resolution lecture slides, the professor gave an algorithm that iteratively
adds new clauses to F until no new clause can be added; in other words, it computes the
least fixed point of the resolution rule starting on F . We say that the resulting set of this
process is saturated under resolution.

Give a constructive method that builds a model M for F from the saturated set of clauses
created by the resolution process. Proof the correctness of your construction.

If you need a hint: you can find the construction without a proof here. Only slides 4, 11–14
and 16 are relevant.

Solution:
We use the construction from the hint. We prove its correctness by induction on the number
of steps of the algorithm. We denote the nth considered clause by Cn and the maximal literal
in a clause C by LC . Our invariants are ICn |= Ci and ICi

⊆ ICn for all i ≤ n .

Case 0: if LC0 is negative, we set IC0
:= ∅. If LC0 = Ai, we set IC0

:= {Ai}.

Case n + 1: If ICn |= Cn+1, we set ICn+1
:= ICn and are done. Assume ICn 6|= Cn+1.

If LCn+1 = Ai, we set ICn+1
:= ICn ∪ {Ai}. As Ai is maximal in Cn+1, ¬Ai does not occur in

Ci for any i ≤ n. Hence ICn+1 |= Ci for all i ≤ n + 1.
Finally assume LCn+1 = ¬Ai. By assumption, ICn 6|= Cn+1. Thus Ai ∈ ICn . Hence, there
is j ≤ n such that Lj = Ai and ICj

= ICj−1
·∪{A}. Let R be the resolvant of Cj and Cn+1

on Ai. Then R does not contain Ai. Hence, R ≺ Cj ≺ Cn+1 and since R is a resolvant, we
must have R = Ck for some k < j (remember: our set is saturated under resolution). By
the inductive hypothesis, we have ICj−1

|= R. Thus there is L ∈ R such that ICj−1
|= L. As

L ≺ Ai = LCj
� · · · � LCn , the assignments ICj−1

, . . . , ICn agree on L. As R ⊆ Cj ∪ Cn+1,
either L ∈ Cn+1 or L ∈ Cj.
In the former case, ICn |= L by agreement of ICj−1

and ICn on L and thus ICn |= Cn+1,
contradicting assumption ICn 6|= Cn+1. In the latter case, ICj−1

|= L and thus ICj−1
|= Cj.

Hence, by construction, ICj
= ICj−1

, contradicting the fact that ICj
= ICj−1

·∪{A}.
(Note: all in all, we showed that the case ICn 6|= Cn+1 and LCn+1 = ¬Ai is impossible.)

https://lara.epfl.ch/w/_media/sav08/gbtalk.pdf

Exercise Sheet 2 Logic Page 4

Homework 2.3. [by blast] (+)
Check the following formulas for satisfiability using one of the algorithms seen in the lecture:

1. (A ∨ ¬B ∨ ¬D ∨ ¬E) ∧ (¬B ∨ C) ∧B ∧ (¬C ∨D) ∧ (¬D ∨ E)

2. ¬(((A→ B) ∧ (B → A))→ (A↔ B))

3. (A→ E) ∧ (B → ⊥) ∧ (C → B) ∧ (> → A) ∧ (A ∧B → C) ∧ (C → D)

Show your work! Remember to give a model for satisfiable formulas.

Solution:
Algorithmic by, for example, resolution, truth tables, or equivalences.

Homework 2.4. [Kőnig’s Lemma] (++)
A finitely branching tree has the following structure:

• There is exactly one root node.

• Every node has a finite number of children.

We assign the root node the level 0 and the children of a node at level n the level n + 1.
Let Tn denote the set of all nodes at level n, and T the set of all nodes, i.e. T =

⋃
n∈N

Tn. Let

Pt for t ∈ T be the set of parent nodes of a node, i.e. t is a child (or grand-child, ...) of all
t′ ∈ Pt. A path is a sequence of connected nodes, starting from the root node.

Prove the following lemma using the compactness theorem: Every countably infinite, finitely
branching tree has an infinite path.

Hint: Use the following template for the proof.

1. Fix a set of tree nodes T . This set is (countably) infinite. You can assume that the
sets Tn and the sets Pt are given.

2. For each node t ∈ T , let At be an atom. If an assignment A makes At true, the node
t is part of the path.

3. Define a set of propositions S that together guarantee the existence of an infinite path.
That set is composed of three subsets:

(a) For each level n ∈ N, a node t ∈ Tn is part of the path.

(b) If a node t is part of the path, so are all of its parent nodes t′ ∈ Pt.

(c) For each level n ∈ N, there is at most one node of level n part of the path.

4. Show that any finite subset of S ′ ⊆ S is satisfiable by constructing an assignment
such that AS′ |= S ′. Consider the largest n for which a proposition from subset (a) is
contained in S ′.

5. Hence, S is satisfiable. Show that a model A |= S represents an infinite path in T .

Solution:
See here, Lemma 16.6.

https://homepages.warwick.ac.uk/~masgar/Teach/2006_461/2006_03_06lecture_konig_lemma.pdf

Exercise Sheet 2 Logic Page 5

Homework 2.5. [Negative Resolution] (++)
We call a clause C negative if it only contains negative literals. Show that resolution remains
complete if it only resolves two clauses if one of them is negative.

Solution:
Again, we modify the completeness proof of resolution presented in the lecture. The base
case is trivial. Assume S is an unsatisfiable set of clauses containing n + 1 atoms. Then we
construct S0 and S1 by setting An+1 to 0 and 1, respectively. Both S0 and S1 are unsatisfiable.
By the inductive hypothesis, we obtain resolution proofs such that S0 `Res’ � and S1 `Res’ �,
where Res’ is our negative resolution procedure. Now add back ¬A to all clauses resolved
in the latter proof. If it is still a refutation, we are done. If we obtain {¬An+1}, we can use
it to resolve it against any clause containing An+1 in S. Note that the resulting clauses are
those of S0. Thus, to conclude, we can append the proof of S0 `Res’ �.

If you use a trick in logic, whom can you be tricking other than yourself?
— Ludwig Wittgenstein

https://en.wikipedia.org/wiki/Ludwig_Wittgenstein

