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Exercise 7.1. [(In)finite Models]
Consider predicate logic with equality. We use infix notation for equality and abbreviate
¬(s = t) by s 6= t. Moreover, we call a structure finite if its universe is finite.

1. Specify a finite model for the formula ∀x (c 6= f(x) ∧ x 6= f(x)).

2. Specify a model for the formula ∀x∀y (c 6= f(x) ∧ (f(x) = f(y) −→ x = y)).

3. Show that the second formula has no finite model.

Solution:

1. UA = {0, 1, 2} ⊂ N, cA = 0, fA(0) = 1, and fA(n + 1) = 2− n

2. UA = N and cA = 0 and fA(n) = n + 1

3. Assume M is a finite model of the formula. By the second conjunct, fM is injective
so |UM| ≤ |f(UM)|. Further, f(UM) ⊆ UM so |f(UM)| = |UM| and hence f(UM) =
UM (using our finiteness assumption). Thus there is d ∈ UM such that f(d) = cM,
contradicting the first conjunct.

Exercise 7.2. [Herbrand Structures]
Consider the formula

F = ∀x∀y(P (f(x), g(y)) ∧ ¬P (g(x), f(y)))

1. Specify a Herbrand model for F .

2. Specify a Herbrand structure suitable for F that is not a model of F .

Solution:
We define UA = T (F ), i.e., the Herbrand universe for F . We invent a constant a ∈ T (F ).
We define fA and gA to be the Herbrand interpretations.

1. PA = {(f(t1), g(t2)) | t1, t2 ∈ T (F )}.
2. PA = {(g(t1), f(t2)) | t1, t2 ∈ T (F )}.
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Exercise 7.3. [Ground Resolution]
Use ground (Gilmore) resolution to prove that the following formula is valid:

(∀xP (x, f(x))) −→ ∃yP (c, y)

Solution:

First put the formula into Skolem form:

¬((∀xP (x, f(x))) −→ ∃yP (c, y))

(∀xP (x, f(x))) ∧ ¬∃yP (c, y)) (push negation)

(∀xP (x, f(x))) ∧ ∀y¬P (c, y)) (push negation)

∀x∀y(P (x, f(x)) ∧ ¬P (c, y)) (Skolem-Form)

Now enumerate the Herbrand expansion:

CE (F ) = {P (c, f(c)),¬P (c, f(c)), . . .}

With resolution, we immediately get � from the first two items in the enumeration.
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Exercise 7.4. [Uncountable “Natural Numbers”]
We consider the following axioms in an attempt to model the natural numbers in first-order
logic with equality:

1. F1 = ∀x∀y(f(x) = f(y)→ x = y)

2. F2 = ∀x(f(x) 6= 0)

3. F3 = ∀x(x = 0 ∨ ∃y(x = f(y)))

Give a model with an uncountable universe for:

1. {F1, F2}
2. {F1, F2, F3}

Remember: A set S is uncountable if there is no injection from S to N.

Solution:

1. UA = R+
0 , 0A = 0, and fA(x) = x + 1

fA is clearly injective and there is no x such that fA(x) = 0, because −1 6∈ UA.

2. We take UA to be the union of the positive real numbers and the non-positive whole
numbers, i.e., UA = R>0 ∪ Z≤0.
Let the symbols be interpreted as follows:

0A = 0

fA(x) =

{
2x if x > 0

x− 1 if x ≤ 0

(a) fA is defined as two disjoint domains that have disjoint ranges and f is injective
on both domains; hence the entire function is injective.

(b) 0 is not in the range of fA: For x > 0, fA(x) > 0 and for x ≤ 0, fA(x) ≤ −1.

(c) To show: x 6= 0→ ∃y(x = f(y)).

If x < 0, then x ≤ −1, hence x = fA(x + 1).

Otherwise, x = fA
(
x
2

)
.
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Homework 7.1. [Model Sizes] (++)

1. Specify a satisfiable formula F (one with and one without equality) such that for all
models A of F , we have |UA| ≥ 4.

2. Can you also specify a satisfiable formula F such that for all models A of F , we have
|UA| ≤ 4? Again, consider both predicate logic with and without equality.

3. Specify a satisfiable formula F with equality such that for all finite models A of F , we
have |UA| ∈ 2N>0.

Solution:

1. ∃x1, x2, x3, x4. x1 6= x2 ∧ x1 6= x3 ∧ x1 6= x4 ∧ x2 6= x3 ∧ x2 6= x4 ∧ x3 6= x4

Without equality, one can use two predicates B1 and B0 representing bits and 4 con-
stants a0, a1, a2, a3 and for each ai, encode i in binary using B1 and B0, i.e. ¬B1(a0)∧
¬B1(a0) ∧ ¬B1(a1) ∧B1(a1) ∧B1(a2) ∧ ¬B1(a2) · · · .

2. ∀x∀y. x = y

Without equality, no limit on the model size can be given: assume there is a finite
model M. Take an arbitrary element e of M. We can add a new element e1 that
behaves exactly the same as e to M without changing the set of formula satisfied by
M (proof by structural induction on formulas). We continue this process iteratively
to obtain a model of arbitrary, countable size. Indeed, we could even add an infinite
number of copies of e and obtain models of arbitrary size.

3. ∀x¬P (x, x) ∧ ∀x∃yP (x, y) ∧ ∀x∀y∀z(P (x, y) ∧ P (y, z)→ (x = z))

Homework 7.2. [Herbrand Structures] (+)
Consider the formula

F = ∀x(P (f(x))↔ ¬P (x))

1. Specify a Herbrand model for F .

2. Specify a Herbrand structure suitable for F that is not a model of F .

Homework 7.3. [Preconditions Are Here To Stay] (+)
Recall the fundamental theorem from the lecture: “Let F be a closed formula in Skolem
form. Then F is satisfiable iff it has a Herbrand model”.

Explain: what goes wrong if the precondition is violated, that is when F is not closed or not
in Skolem form. Describe both cases.

Solution:
∃x. (P (x)∧¬P (a)); there is no Herbrand model because there is only the constant a and no
functionals but we need at least two elements for the formula to be satisfiable. The same
problems arises for P (x) ∧ ¬P (a).
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Homework 7.4. [Ground resolution] (++)
Execute ground resolution to show that the following formula is unsatisfiable:

∀x∀y((P (x) ∧ ¬Q(y, y))→ Q(x, y)) ∧ ¬∃x(P (x) ∧ ∃y(Q(y, y) ∧Q(x, y))) ∧ ∃y(P (y))

Solution:

Algorithmic.

Homework 7.5. [Proof of the Fundamental Theorem] (++)
Recall the fundamental theorem: Let F be a closed formula in Skolem form. Then F is
satisfiable iff it has a Herbrand model. Give the omitted proof for the base case (slide 6,
A(G) = T (G)).

Solution:
Let A be an arbitrary model of F . We define a Herbrand structure T as follows (according
to the lecture):

UT = T (F ) fT (t1, . . . , tn) = f(t1, . . . , tn)

(t1, . . . , tn) ∈ P T iff (A(t1), . . . ,A(tn)) ∈ PA

Additionally, if F contains no constant: aA = u for some arbitrary u ∈ UA.

We now prove the omitted case for the following stronger proposition: For every closed
formula G in Skolem form such that all function and predicate symbols in G occur in F ,
if A |= G then T |= G. The proof proceeds by induction on the number n of universal
quantifiers in G.

• Base case: n = 0. G has no quantifiers (because it is in Skolem form).

Claim: A(G) = T (G).

Proof by induction on the structure of G.

– Base case: G = P (t1, . . . , tk)

We know that A(T (t)) = A(t), because T (t) = t.

T |= P (t1, . . . , tk) iff (T (t1), . . . , T (tk)) ∈ P T

iff (A(T (t1)), . . . ,A(T (tk))) ∈ PA

iff (A(t1), . . . ,A(tk)) ∈ PA

iff A |= P (t1, . . . , tk)

– Induction step: G = H1 ∧H2

Induction hypotheses: A(Hi) = T (Hi) for i ∈ {1, 2}

A(H1 ∧H2) iff A(H1) or A(H2)

iff T (H1) or T (H2)

iff T (H1 ∧H2)

– Other induction steps are similar.
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Logic takes care of itself; all we have to do is to look and see how it does it.
— Ludwig Wittgenstein


