Prof. Tobias Nipkow
Kevin Kappelmann

Exercise 8.1. [Simultaneous substitution]

Recall that $\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right]$ is the simultaneous substitution of x_{1}, \ldots, x_{n} by t_{1}, \ldots, t_{n}.

1. Can we always express $\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right]$ as a series of one-variable substitutions?
2. Can we always summarise a series of one-variable substitutions to a single simultaneous substitution?

Exercise 8.2. [Occurs check]

What happens if one omits the occurs check in the unification algorithm? Find an example where the unification algorithm without occurs check diverges or returns the wrong result.

Exercise 8.3. [Unifiable terms]

Specify the most general unifiers for the following sets of terms, if one exists:

$$
\begin{aligned}
L_{1} & =\{f(x, y), f(h(a), x)\} \\
L_{2} & =\{f(x, y), f(h(x), x)\} \\
L_{3} & =\{f(x, b), f(h(y), z)\} \\
L_{4} & =\{f(x, x), f(h(y), y)\}
\end{aligned}
$$

Exercise 8.4. [Formulas without negation]

Prove that every predicate logic formula that only contains $\wedge, \vee, \forall, \exists, \longrightarrow$ and atomic formulas is satisfiable. Is such a formula also valid?

Homework 8.1. [Most general unifier]

Consider the unification problem $x \stackrel{?}{=} f(y)$. Without running the unification algorithm, prove that

1. $\sigma_{1}=\{x \mapsto f(y)\}$ is a most general unifier.
2. $\sigma_{2}=\{x \mapsto f(z), y \mapsto z\}$ is unifier, but not a most general unifier.

Homework 8.2. [Unification]

Use the algorithm presented in the lecture to compute a most general unifier for the following set of formulas: $\{P(g(x), f(a)), P(y, x), P(g(f(z)), f(z))\}$

Homework 8.3. [Untangling simultaneous substitution]

Recall Exercise 8.1. Demonstrate how to "untangle" a simultaneous substitution that has been obtained by consolidating one-variable substitutions back into one-variable substitutions.

Homework 8.4. [Anti-Unification]

A term t is a generalisation of a list of terms S if for each $s \in S$ there is a substitution σ_{s} such that $t \sigma_{s}=s$. A term t is a most specific generalisation (msg) of S if for any generalisation t^{\prime} of S, there is a substitution $\sigma_{t^{\prime}}$ such that $t^{\prime} \sigma_{t^{\prime}}=t$.
Give a recursive procedure that computes the msg of a finite list S. Apply your algorithm to the list $S:=[f(g(x), x, d, x), f(x, g(x), d, g(x)), f(h(c), h(c), d, h(c))]$ and prove that the returned msg is indeed an msg of S.
Hint: design an algorithm that operates recursively on the structure of terms.
Bonus: Prove that your algorithm always returns the msg.

Nature will always maintain her rights and prevail in the end over any abstract reasoning whatsoever.

- David Hume

