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Exercise 9.1. [Wait, What?]

1. Resolution for first-order logic is sound and complete.

2. The satisfiability and validity problems for first-order logic are undecidable.

How do you reconcile these two facts? Write down the definitions of all above used logical
terminology (sound, complete, undecidable, etc.) and discuss the consequences of above
facts.

Solution:
Definitions: cf lecture; resolution is just a semi-decision procedure: if a formula is satisfiable,
resolution might not terminate.

Exercise 9.2. [Do You Even Lifting Lemma?]
Consider the following resolution:

{Q(a, b)}

{¬P (f(a), g(b)), Q(a, b)}

{¬P (f(x), g(y)), Q(x, y)}

[a/x]
[b/y]

{P (f(a), g(b))}

{P (x, y), P (f(a), z)}
[f(a)/x]
[g(b)/y]
[g(b)/z]

Follow the proof of the Lifting Lemma and find out which (predicate logic) resolution step
is constructed from this.

Solution:
The missing predicate resolution step can be depicted as follows:

{Q(a, b)}

{¬P (f(a), g(b)), Q(a, b)}

{¬P (f(u), g(v)), Q(u, v)}

{¬P (f(x), g(y)), Q(x, y)}

[u/x]
[v/y]

[a/u]
[b/v]

{P (f(a), g(b))}

{P (x, y), P (f(a), z)}
[f(a)/x]
[g(b)/y]
[g(b)/z]

{Q(a, v)}

[f(a)/x]
[g(v)/y]
[g(v)/z]
[a/u]

[b/v]
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Exercise 9.3. [Green Dragon Children Are Cute Unless You Have to Fight
Them]
Express the following facts by formulas in predicate logic.

1. Every dragon is happy if all its children can fly.

2. Green dragons can fly.

3. A dragon is green if it is a child of at least one green dragon.

Prove by resolution that the conjunction of these three statements implies the following: all
green dragons are happy.

Solution:
We use unary predicates H, G and F to describe that a dragon is happy, green, and it can
fly, respectively, and a binary predicate C to describe a dragon being a child of another
dragon. Then the sentences in English can be expressed as follows:

1. F1 = ∀x
(
∀y (C(y, x)→ F (y))→ H(x)

)
2. F2 = ∀x (G(x)→ F (x))

3. F3 = ∀x
(
∃y (C(x, y) ∧G(y))→ G(x)

)
4. F4 = ∀x (G(x)→ H(x))

We need to prove that the last formula is entailed by the previous three, formally, F1 ∧F2 ∧
F3 |= F4. Equivalently, we prove that F1 ∧ F2 ∧ F3 ∧ ¬F4 is unsatisfiable.

First we transform each formula into the required Skolem form with matrices in CNF:

F1 ≡ ∀x∃y
(
(C(y, x) ∨H(x)) ∧ (¬F (y) ∨H(x))

)
≡s ∀x

(
(C(f(x), x) ∨H(x)) ∧ (¬F (f(x)) ∨H(x))

)
F2 ≡ ∀x (¬G(x) ∨ F (x))

F3 ≡ ∀x∀y
(
¬C(x, y) ∨ ¬G(y) ∨G(x)

)
¬F4 ≡ ∃x

(
G(x) ∧ ¬H(x)

)
≡s G(a) ∧ ¬H(a)

Finally, we create a resolution proof of the empty clause:
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{¬F (f(a))}

{¬F (f(x)), H(x))}{¬H(a)}

{F (f(a))}

{G(f(a))}

{C(f(a), a}

{C(f(x), x), H(x)}

{¬C(x, a), G(x)}

{G(a)}{¬C(x, y),¬G(y), G(x)}{¬G(x), F (x)}

Exercise 9.4. [Justice > Equity > Equality]
We consider how to model equality in predicate logic. In the lecture slides, the following
axiom schema for congruence is used:

Eq(xi, y)

Eq(f(x1, . . . , xi, . . . , xn), f(x1, . . . , y, . . . , xn))

Assume that this schema is replaced by:

Eq(x1, y1) · · · Eq(xn, yn)

Eq(f(x1, . . . , xn), f(y1, . . . , yn))

Reflexivity, symmetry and transitivity stay unchanged. Show that the above modified
schemas is equivalent to the schemas from the lecture.

Solution:
We first simulate the modified schema with the original one. Because the original schema
only allows us to replace one term at a time, an induction is necessary. We want to prove
Eq(f(x1, . . . , xn), f(y1, . . . , ym, xm+1, . . . , xn)) for 1 ≤ m ≤ n. With m = n we obtain the
desired schema, hence the induction must proceed on m.

• Base case: m = 1
Eq(x1, y1)

Eq(f(x1, . . . , xn), f(y1, x2, . . . , xn))

• Induction step: m+ 1

Trans

IH
Eq(f(x1, . . . , xn), f(y1, . . . , ym, xm+1, . . . , xn))

Eq(xm+1, ym+1)

Eq(f(y1, . . . , ym, xm+1, . . . , xn), f(y1, . . . , ym+1, xm+2, . . . , xn))

Eq(f(x1, . . . , xn), f(y1, . . . , ym+1, xm+2, . . . , xn))

Now, the opposite direction.

Eq(x1, x1) · · · Eq(xi, y) · · · Eq(xn, xn)

Eq(f(x1, . . . , xi, . . . , xn), f(x1, . . . , y, . . . , xn))
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Homework 9.1. [Blackbox Proving] (++)
Assume you are given an algorithm A operating on first-order CNF formulas such that
whenever the resolution calculus produces a resolvent R from clauses C1 and C2, A produces
a clause R′ ⊆ R.

Prove that A is refutationally complete.

Solution:
We prove a generalisation: whenever the resolution calculus proves � from a set of clauses
S then A can prove � from any set S ′ satisfying ∀C ∈ S.∃C ′ ∈ S ′.∃σ.C ′σ ⊆ C. The proof
is by induction on the number of resolution steps n:

In case n = 0, � ∈ S and hence � ∈ S ′ and we are done. In case n + 1, assume we
are resolving two clauses C1, C2 on L1, . . . , Lm, L

′
1, . . . , L

′
n using σ to obtain R. Then there

are D1, D2 ∈ S ′ and σ1, σ2 with D1σ1 ⊆ C1 and D2σ2 ⊆ C2. WLOG dom(σi) = vars(Di)
(otherwise consider the restriction of σi). Let N1 := {L ∈ D1 | Lσ1 ∈ {L1, . . . , Lm}} and
N2 := {L ∈ D2 | Lσ2 ∈ {L′

1, . . . , L
′
n}}.

If N1 6= ∅ 6= N2, then we can resolve D1 and D2 on N1 and N2 using (σ1 ∪ σ2)σ and thus A
hands us R′ ⊆ R. Now S ′ ∪{R′} satisfies the invariant with respect to S ∪{R} and thus we
can apply the inductive hypothesis to conclude.

Assume one of N1, N2 is empty. WLOG assume it is N1. We have R ⊇ (C1 \{L1, . . . , Lm})σ.
So D1σ1σ ⊆ R and hence S ′ satisfies the invariant with respect to S ∪ {R}. Thus we can
apply the inductive hypothesis to conclude.
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Homework 9.2. [Restricted Resolution] (+++)
In the resolution procedure as defined in the lecture slides, we can unify arbitrarily many
literals from two clauses. Consider a modified resolution procedure where exactly one literal
is picked in each clause (“binary resolution”). We add a new rule (“factoring”): for a clause
C = {L1, . . . , Ln}, where {Li, Lj} can be unified using an mgu σ with i 6= j, add another
clause C ′ = (C \ Li)σ.

For example, given the clause

C = {¬W (x),¬W (f(y)), T (x, y),¬W (f(c))}

we can apply the factoring rule as follows:

L1 = ¬W (x), L2 = ¬W (f(y)), σ = {x 7→ f(y)}, C ′ = {¬W (f(y)), T (f(y), y),¬W (f(c))}

1. Prove that restricted resolution without factoring is incomplete.

2. Prove that restricted resolution is complete.

Solution:
To see why factoring is necessary, consider the contradictory clauses {P (x), P (y)} and
{¬P (v),¬P (w)} (try to derive the empty clause and explain why it fails!).

As for the completeness proof, it suffices to simulate the resolution procedure from the
lecture. Assume the calculus produces a resolvent R =

(
(C1 \ {L1, . . . , Lm}) ∪ (C2ρ \

{L′
1, . . . , L

′
n})

)
σ. We show that we can derive R′ ⊆ R using our restricted resolution cal-

culus. This then implies completeness by the previous homework exercise. We proceed by
induction on k := max{m,n}. If k = 1, then we can just use the binary resolution rule.

Assume k > 1 and WLOG k = m. By assumption, there is an mgu σ of {L1, . . . , Lm, L
′
1, . . . , L

′
m}.

WLOG assume dom(σ) ∩ vars((C1 ∪ C2ρ)σ) = ∅ (otherwise, obtain such an mgu from σ by
renaming). By factoring, we obtain C3 := (C1 \ {L1})σ.

Now let σ′ := σ|vars(C2ρ) be the restriction of σ on vars(C2ρ). Note that σ′ is an mgu of
{L2σ, . . . , Lmσ, L

′
1, . . . , L

′
m} (why?). So we can build the resolvent

R′ =
(
(C3 \ {L2σ, . . . , Lmσ}) ∪ (C2ρ \ {L′

1, . . . , L
′
n})

)
σ′

using the original resolution calculus and hence, by the inductive hypothesis, also the resol-
vent R′′ ⊆ R′ using our restricted resolution calculus. Finally note that

R′ =
(
(C3 \ {L2σ, . . . , Lmσ}) ∪ (C2ρ \ {L′

1, . . . , L
′
n})

)
σ′

=
(
((C1 \ {L1})σ \ {L2, . . . , Lm}σ) ∪ (C2ρ \ {L′

1, . . . , L
′
n})

)
σ′

=
(
(C1σ \ {L1, . . . , Lm}σ) ∪ (C2ρ \ {L′

1, . . . , L
′
n})

)
σ′

⊆
(
(C1 \ {L1, . . . , Lm})σ ∪ (C2ρ \ {L′

1, . . . , L
′
n})

)
σ′

=
(
(C1 \ {L1, . . . , Lm}) ∪ (C2ρ \ {L′

1, . . . , L
′
n})

)
σ.

(check these steps carefully)
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Homework 9.3. [Equality Elimination] (+)
Show with resolution that: f(f(f(a))) = a →

(
f(f(a)) = a → f(a) = a

)
is valid. First,

remove equality based on the procedure from the lecture. Then perform resolution.

Solution:
We obtain

Eq(f(f(f(a)), a)→
(
Eq(f(f(a)), a)→ Eq(f(a) = a)

)
.

Then negate and clausify

{Eq(f(f(f(a)), a)}, {Eq(f(f(a)), a)}, {¬Eq(f(a), a)}.

Then add all clausified equality axioms:

{Eq(f(f(f(a)), a)}, {Eq(f(f(a)), a)}, {¬Eq(f(a), a)}
{Eq(x, x)}, {¬Eq(x, y), Eq(y, x)}, {¬Eq(x, y),¬Eq(y, z), Eq(x, z)}

{¬Eq(x, y), Eq(f(x), f(y))}.

Finally, resolve!

1. Resolving clause 2 and f axiom with [f(f(a))/x, a/y]: {Eq(f(f(f(a))), f(a))}
2. Resolving this clause and the symmetry axiom with [f(f(f(a)))/x, f(a)/y]:
{Eq(f(a), f(f(f(a))))}.

3. Resolving this clause and the transitivity axiom with [f(f(f(a)))/y, f(a)/x]:
{¬Eq(f(f(f(a))), z), Eq(f(a), z)}

4. Resolving this clause and clause 3 with [a/z]: {¬Eq(f(f(f(a))), a)}
5. Resolving this clause and clause 1: �
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Homework 9.4. [(Bonus) A Barbarian Bavarian Barber Walks Into a Barber]
(++)
You can solve this exercise if you need more practice with FOL-resolution; but you will not
miss anything if you do not – there is no new content in this exercise.

Consider the signature {B, S} where B is a unary predicate expressing that an element
represents a barber; while S(x, y) indicates that “x shaves y”.

1. Axiomatize the statements:

• Persons who do not shave themselves are shaven by all barbers.

• No barber shaves persons who shave themselves.

2. Show by resolution that the fact that no barbers exist is a consequence of the two
statements above.

Solution:

1. • ∀p∀b . (¬S(p, p) ∧B(b)→ S(b, p))

• ∀p∀b . (S(p, p) ∧B(b)→ ¬S(b, p)

2. We obtain the clause set {{S(p, p),¬B(b), S(b, p)} , {¬S(p, p),¬B(b),¬S(b, p)}}.
We show the entailment of ϕ := ∀b . ¬B(b) by assuming ¬ϕ and proving a contradiction.
To this end, we skolemize ¬∀b . ¬B(b) ≡ ∃b . B(b) to B(c).

{S(p, p),¬B(b), S(b, p)} {B(c)} {¬S(p, p),¬B(b),¬S(b, p)}

[c/b]

{S(p, p), S(c, p)}

{S(u, u), S(c, u)}

[c/b]

{¬S(p, p),¬S(c, p)}

[c/u]

[c/p]

�

[u/p]

This proves the non-existence of barbers under the given assumptions. Behind what
might appear as smoke and mirrors, the conclusion of this is actually easy to obtain
by thinking about the shaving of barbers: Barbers shave themselves if and only if they
do not shave themselves, which is the central contradiction to uncover.

The past was erased,
the erasure was forgotten,
the lie became the truth.

— George Orwell

https://en.wikipedia.org/wiki/George_Orwell

