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Exercise 10.1. [∃∗∀∗ with Equality]
Show that unsatisfiability of formulas from the ∃∗∀∗ fragment with equality is decidable.

Solution:
Applying the reduction of equality to non-equality from the lecture only inserts some (iso-
lated) ∀-quantifiers, thus preserving the ∃∗∀∗-fragment.

Exercise 10.2. [∃∗∀2∃∗]
Show how to reduce deciding unsatisfiability of formulas from the ∃∗∀2∃∗-fragment to decid-
ing unsatisfiability of formulas from the ∀2∃∗-fragment.

Solution:
Using skolemization for the outer existential quantifiers preserves satisfiability, and replaces
variables by skolem constants, i.e., introduces no function symbols of arity > 0. The resulting
formula is obviously in the ∀2∃∗-fragment.

Exercise 10.3. [Sequent Calculus]
Prove the following formulas in sequent calculus:

1. ¬∃xP (x)→ ∀x¬P (x)

2. (∀x(P ∨Q(x)))→ (P ∨ ∀xQ(x))

Solution:

1.
P (y)⇒ ∃xP (x), P (y)

¬R
⇒ P (y),∃xP (x),¬P (y)

∃R
⇒ ∃xP (x),¬P (y)

∀R
⇒ ∃xP (x),∀x¬P (x)

¬L
¬∃xP (x)⇒ ∀x¬P (x)

→ R
¬∃xP (x)→ ∀x¬P (x)

2.

(∀x(P ∨Q(x))), P ⇒ P,Q(x)
Ax

(∀x(P ∨Q(x))), Q(x)⇒ P,Q(x)
Ax

(∀x(P ∨Q(x))), (P ∨Q(x))⇒ P,Q(x)
∨L

∀x(P ∨Q(x))⇒ P,Q(x)
∀L

∀x(P ∨Q(x))⇒ P,∀xQ(x)
∀R

∀x(P ∨Q(x))⇒ P ∨ ∀xQ(x)
∨R

⇒ (∀x(P ∨Q(x)))→ (P ∨ ∀xQ(x))
=⇒ R
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Exercise 10.4. [Can’t Touch This]
Let A,B be structures over the same language with universes A and B, respectively. We say
that A,B are isomorphic if there is a bijection i : A→ B which preserves the interpretation
of all symbols, that is:

1. i(cA) = cB, for all constants c

2. i(fA(a1, . . . , an)) = fB(i(a1), . . . , i(an)), for all functions f and a1, . . . , an ∈ A

3. PA(a1, . . . , an) ⇐⇒ PB(i(a1), . . . , i(an)), for all predicates P and a1, . . . , an ∈ A

Let N be the standard model of the natural numbers. Assume you are given a countable
first-order axiomatisation T of N . Show that there is another model N ′ of T that is not
isomorphic to N .

Solution:
Let c be a fresh constant. Consider the theory T ′ := T ∪ {c 6= n | n ∈ N}. Intuitively, c
denotes an element that is different from all natural numbers. Note that T ′ is countable.

We now apply compactness: Take a finite subset S of T ′. S contains only finitely many
sentences of the shape c 6= n. Let m := 1 + max{n | n = 0 ∨ (c 6= n) ∈ S}. Extend N by
adding the constant c and interpret it by m. Then N |= S.

Hence, by the compactness theorem, there is N ′ with N ′ |= T ′. Thus, N ′ |= T but N ′
contains an element cN

′
that is different from all natural numbers and hence cannot be

isomorphic to N .

To see that N ′ is not isomorphic to N more formally, assume there is an isomorphism i

from N ′ to N . Let n := i(cN
′
) ∈ UN . Then cN

′
= nN

′ i is iso.⇐⇒ i(cN
′
) = i(nN

′
) ⇐⇒ n =

i(nN
′
)

i is iso.⇐⇒ n = n. However, cN
′
= nN

′
is false and n = n true, contradiction.
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Homework 10.1. [FOL without Function Symbols] (+++)
Describe an algorithm that transforms any formula F (in FOL with equality) into an equi-
satisfiable formula F ′ (in FOL with equality) that does not use function symbols. Do not
forget to deal with constants, i.e. functions with arity 0.

Apply your algorithm to the formula F := ∀xy.R(f(x, y)) ∧ P (c, g(f(x, y))).

Solution:
Idea: functions can be modelled as relations satisfying some additional properties (totality
+ right-uniqueness).

1. For any function f/n, introduce a fresh predicate Pf of arity n + 1.

2. Add the following conjunct for each new predicate: ∀x1 · · ·xn.∃y
(
Pf (x1, . . . , xn, y) ∧

∀z. (Pf (x1, . . . , xn, z)→ y = z)
)

3. Iteratively replace all innermost occurences of f(x1, . . . , xn) in F by some new, univer-
sially bound variable z and add the conjunct U(x1, . . . , xn, z).

Example, step by step, excluding the new predicates’ conjuncts:

1. ∀x, y, z1. (R(f(x, y)) ∧ P (z1, g(f(x, y))) ∧ Pc(z1))

2. ∀x, y, z1, z2. (R(z2) ∧ P (z1, g(z2)) ∧ Pc(z1) ∧ Pf (x, y, z2))

3. ∀x, y, z1, z2, z3. (R(z2) ∧ P (z1, z3) ∧ Pc(z1) ∧ Pf (x, y, z2) ∧ Pg(z2, z3))

Clearly, by interpreting each Pf by Pf := {(e1, . . . , en, e) | f(e1, . . . , en) = e}, each model of
F can be transformed to a model of F ′. Conversely, if F ′ has a model, then each Pf can be
used to interpret the function f , allowing us to construct a model for F .

Homework 10.2. [Undefinability of Finiteness] (++)
In the following, given a structure A, we write A := UA.

1. Give a countable set of sentences SI such that for any structure A, A |= SI if and only
if A has infinitely many elements.

2. Show that there cannot be a countable set of sentences SF such that for any structure
A, A |= SF if and only if A has finitely many elements.

Solution:

1. Let Fn := ∃x1, . . . , xn.
∧n

1≤i<j≤n xi 6= xj and SI := {Fn | n ∈ N+}. If A is infinite, then
A |= Fn for each n and hence A |= SI . If |A| := n ∈ N+, then A 6|= Fn+1 and hence
A 6|= SI .

2. Assume there is such a set SF . Consider the set S := SF ∪ SI . Take a finite subset
T ⊂ S. Let m := max{n | n = 1 ∨ Fn ∈ T}. Let A be an arbitrary structure for SF

of size greater than m. Then A |= Fi for all 1 ≤ i ≤ m and A |= SF . Hence, A |= T .
Thus, by compactness, S has a model M. Then M |= SF and hence UM is finite
by assumption, but also M |= SI and hence UM is infinite by the previous exercise.
Contradiction!
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Homework 10.3. [Sequent Calculus] (++)
Prove the following statements using sequent calculus if they are valid, or give a countermodel
otherwise.

1. ¬∀x∃y∀z(¬P (x, z) ∧ P (z, y))

2. ∀x∀y∀z(P (x, x) ∧ (P (x, y) ∧ P (y, z)→ P (x, z)))

Homework 10.4. [Miniscoping] (++)
In the lecture, we proved that deciding unsatisfiability of monadic FOL formulas can be
reduced to deciding unsatisfiability of formulas from the ∃∗∀∗ fragment by using miniscoping.

Prove the lemma that after miniscoping, no nested quantifiers remain.

Solution:
We prove by induction on the structure of the formula that after miniscoping, for each sub-
formula of the form Qx. F , F is a disjunction of literals if Q = ∀ and conjunction of literals
if Q = ∃ and each literal contains x free.

The only interesting cases are the quantifier cases. Assume we have a formula of the form
∃xF such that no miniscoping rules are applicable. By the induction hypothesis, below all
quantifiers in F , there are only disjunctions/conjunctions of literals containing the bound
variable.

As no miniscoping rules are applicable, F must be a conjunction of literals and quantified
formulas such that each conjunct contains x free. So assume F contains a quantified formula,
that is F = · · · ∧Qy.F ′ ∧ · · · . By the induction hypothesis, F ′ is a disjunction/conjunction
of literals, each literal containing y free. However, as we are in the monadic fragment, a
literal can contain at most one free variable. Thus, F ′ cannot contain x free, which is a
contradiction to F containing quantifiers. Thus, F only contains literals and hence has the
desired shape.

The case for ∀xF is similar.

Logic is in the eye of the logician.
— Gloria Steinem

https://en.wikipedia.org/wiki/Gloria_Steinem

