Technical University of Munich Chair for Logic and Verification

Prof. Tobias Nipkow
Kevin Kappelmann

Exercise 10.1. $\left[\exists^{*} \forall^{*}\right.$ with Equality]

Show that unsatisfiability of formulas from the $\exists^{*} \forall^{*}$ fragment with equality is decidable.

Solution:

Applying the reduction of equality to non-equality from the lecture only inserts some (isolated) \forall-quantifiers, thus preserving the $\exists^{*} \forall^{*}$-fragment.
Exercise 10.2. $\left[\exists^{*} \forall^{2} \exists^{*}\right]$
Show how to reduce deciding unsatisfiability of formulas from the $\exists^{*} \forall^{2} \exists^{*}$-fragment to deciding unsatisfiability of formulas from the $\forall^{2} \exists^{*}$-fragment.

Solution:

Using skolemization for the outer existential quantifiers preserves satisfiability, and replaces variables by skolem constants, i.e., introduces no function symbols of arity >0. The resulting formula is obviously in the $\forall^{2} \exists^{*}$-fragment.

Exercise 10.3. [Sequent Calculus]

Prove the following formulas in sequent calculus:

1. $\neg \exists x P(x) \rightarrow \forall x \neg P(x)$
2. $(\forall x(P \vee Q(x))) \rightarrow(P \vee \forall x Q(x))$

Solution:

1.
2.

$$
\begin{gathered}
\frac{\frac{(\forall x(P \vee Q(x))), P \Rightarrow P, Q(x)}{(\forall x \quad} \quad \overline{(\forall x(P \vee Q(x))), Q(x) \Rightarrow P, Q(x)} A x}{(\forall x(P \vee Q(x))),(P \vee Q(x)) \Rightarrow P, Q(x)} \vee L \\
\forall x(P \vee Q(x)) \Rightarrow P, Q(x) \\
\\
\hline \forall x(P \vee Q(x)) \Rightarrow P, \forall x Q(x) \\
\forall x(P \vee Q(x)) \Rightarrow P \vee \forall x Q(x) \\
\Rightarrow(\forall x(P \vee Q(x))) \rightarrow(P \vee \forall x Q(x)) \\
\hline
\end{gathered}>R
$$

Exercise 10.4. [Can't Touch This]

Let \mathcal{A}, \mathcal{B} be structures over the same language with universes A and B, respectively. We say that \mathcal{A}, \mathcal{B} are isomorphic if there is a bijection $i: A \rightarrow B$ which preserves the interpretation of all symbols, that is:

1. $i\left(c^{\mathcal{A}}\right)=c^{\mathcal{B}}$, for all constants c
2. $i\left(f^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=f^{\mathcal{B}}\left(i\left(a_{1}\right), \ldots, i\left(a_{n}\right)\right)$, for all functions f and $a_{1}, \ldots, a_{n} \in A$
3. $P^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow P^{\mathcal{B}}\left(i\left(a_{1}\right), \ldots, i\left(a_{n}\right)\right)$, for all predicates P and $a_{1}, \ldots, a_{n} \in A$

Let \mathcal{N} be the standard model of the natural numbers. Assume you are given a countable first-order axiomatisation T of \mathcal{N}. Show that there is another model \mathcal{N}^{\prime} of T that is not isomorphic to \mathcal{N}.

Solution:

Let c be a fresh constant. Consider the theory $T^{\prime}:=T \cup\{c \neq n \mid n \in \mathbb{N}\}$. Intuitively, c denotes an element that is different from all natural numbers. Note that T^{\prime} is countable.
We now apply compactness: Take a finite subset S of T^{\prime}. S contains only finitely many sentences of the shape $c \neq n$. Let $m:=1+\max \{n \mid n=0 \vee(c \neq n) \in S\}$. Extend \mathcal{N} by adding the constant c and interpret it by m. Then $\mathcal{N} \models S$.
Hence, by the compactness theorem, there is \mathcal{N}^{\prime} with $\mathcal{N}^{\prime} \models T^{\prime}$. Thus, $\mathcal{N}^{\prime} \models T$ but \mathcal{N}^{\prime} contains an element $c^{\mathcal{N}^{\prime}}$ that is different from all natural numbers and hence cannot be isomorphic to \mathcal{N}.
To see that \mathcal{N}^{\prime} is not isomorphic to \mathcal{N} more formally, assume there is an isomorphism i from \mathcal{N}^{\prime} to \mathcal{N}. Let $n:=i\left(c^{\mathcal{N}^{\prime}}\right) \in \mathcal{U}^{\mathcal{N}}$. Then $c^{\mathcal{N}^{\prime}}=n^{\mathcal{N}^{\prime}} \stackrel{i \text { is iso. }}{\Longleftrightarrow} i\left(c^{\mathcal{N}^{\prime}}\right)=i\left(n^{\mathcal{N}^{\prime}}\right) \Longleftrightarrow n=$ $i\left(n^{\mathcal{N}^{\prime}}\right) \stackrel{i \text { is iso. }}{\Longleftrightarrow} n=n$. However, $\mathcal{C}^{\mathcal{N}^{\prime}}=n^{\mathcal{N}^{\prime}}$ is false and $n=n$ true, contradiction.

Homework 10.1. [FOL without Function Symbols]

Describe an algorithm that transforms any formula F (in FOL with equality) into an equisatisfiable formula F^{\prime} (in FOL with equality) that does not use function symbols. Do not forget to deal with constants, i.e. functions with arity 0 .
Apply your algorithm to the formula $F:=\forall x y . R(f(x, y)) \wedge P(c, g(f(x, y)))$.

Solution:

Idea: functions can be modelled as relations satisfying some additional properties (totality + right-uniqueness).

1. For any function f / n, introduce a fresh predicate P_{f} of arity $n+1$.
2. Add the following conjunct for each new predicate: $\forall x_{1} \cdots x_{n} . \exists y\left(P_{f}\left(x_{1}, \ldots, x_{n}, y\right) \wedge\right.$ $\left.\forall z .\left(P_{f}\left(x_{1}, \ldots, x_{n}, z\right) \rightarrow y=z\right)\right)$
3. Iteratively replace all innermost occurences of $f\left(x_{1}, \ldots, x_{n}\right)$ in F by some new, universially bound variable z and add the conjunct $U\left(x_{1}, \ldots, x_{n}, z\right)$.
Example, step by step, excluding the new predicates' conjuncts:
4. $\forall x, y, z_{1} \cdot\left(R(f(x, y)) \wedge P\left(z_{1}, g(f(x, y))\right) \wedge P_{c}\left(z_{1}\right)\right)$
5. $\forall x, y, z_{1}, z_{2} .\left(R\left(z_{2}\right) \wedge P\left(z_{1}, g\left(z_{2}\right)\right) \wedge P_{c}\left(z_{1}\right) \wedge P_{f}\left(x, y, z_{2}\right)\right)$
6. $\forall x, y, z_{1}, z_{2}, z_{3} .\left(R\left(z_{2}\right) \wedge P\left(z_{1}, z_{3}\right) \wedge P_{c}\left(z_{1}\right) \wedge P_{f}\left(x, y, z_{2}\right) \wedge P_{g}\left(z_{2}, z_{3}\right)\right)$

Clearly, by interpreting each P_{f} by $P_{f}:=\left\{\left(e_{1}, \ldots, e_{n}, e\right) \mid f\left(e_{1}, \ldots, e_{n}\right)=e\right\}$, each model of F can be transformed to a model of F^{\prime}. Conversely, if F^{\prime} has a model, then each P_{f} can be used to interpret the function f, allowing us to construct a model for F.

Homework 10.2. [Undefinability of Finiteness]

In the following, given a structure \mathcal{A}, we write $A:=U^{\mathcal{A}}$.

1. Give a countable set of sentences S_{I} such that for any structure $\mathcal{A}, \mathcal{A} \models S_{I}$ if and only if A has infinitely many elements.
2. Show that there cannot be a countable set of sentences S_{F} such that for any structure $\mathcal{A}, \mathcal{A} \models S_{F}$ if and only if A has finitely many elements.

Solution:

1. Let $F_{n}:=\exists x_{1}, \ldots, x_{n} . \bigwedge_{1 \leq i<j \leq n}^{n} x_{i} \neq x_{j}$ and $S_{I}:=\left\{F_{n} \mid n \in \mathbb{N}_{+}\right\}$. If A is infinite, then $\mathcal{A} \models F_{n}$ for each n and hence $\mathcal{A} \models S_{I}$. If $|A|:=n \in \mathbb{N}_{+}$, then $\mathcal{A} \not \vDash F_{n+1}$ and hence $\mathcal{A} \not \models S_{I}$.
2. Assume there is such a set S_{F}. Consider the set $S:=S_{F} \cup S_{I}$. Take a finite subset $T \subset S$. Let $m:=\max \left\{n \mid n=1 \vee F_{n} \in T\right\}$. Let \mathcal{A} be an arbitrary structure for S_{F} of size greater than m. Then $\mathcal{A} \models F_{i}$ for all $1 \leq i \leq m$ and $\mathcal{A} \models S_{F}$. Hence, $\mathcal{A} \models T$. Thus, by compactness, S has a model \mathcal{M}. Then $\mathcal{M} \vDash S_{F}$ and hence $U^{\mathcal{M}}$ is finite by assumption, but also $\mathcal{M} \models S_{I}$ and hence $U^{\mathcal{M}}$ is infinite by the previous exercise. Contradiction!

Homework 10.3. [Sequent Calculus]

Prove the following statements using sequent calculus if they are valid, or give a countermodel otherwise.

1. $\neg \forall x \exists y \forall z(\neg P(x, z) \wedge P(z, y))$
2. $\forall x \forall y \forall z(P(x, x) \wedge(P(x, y) \wedge P(y, z) \rightarrow P(x, z)))$

Homework 10.4. [Miniscoping]

In the lecture, we proved that deciding unsatisfiability of monadic FOL formulas can be reduced to deciding unsatisfiability of formulas from the $\exists^{*} \forall^{*}$ fragment by using miniscoping.
Prove the lemma that after miniscoping, no nested quantifiers remain.

Solution:

We prove by induction on the structure of the formula that after miniscoping, for each subformula of the form $Q x . F, F$ is a disjunction of literals if $Q=\forall$ and conjunction of literals if $Q=\exists$ and each literal contains x free.
The only interesting cases are the quantifier cases. Assume we have a formula of the form $\exists x F$ such that no miniscoping rules are applicable. By the induction hypothesis, below all quantifiers in F, there are only disjunctions/conjunctions of literals containing the bound variable.
As no miniscoping rules are applicable, F must be a conjunction of literals and quantified formulas such that each conjunct contains x free. So assume F contains a quantified formula, that is $F=\cdots \wedge Q y \cdot F^{\prime} \wedge \cdots$. By the induction hypothesis, F^{\prime} is a disjunction/conjunction of literals, each literal containing y free. However, as we are in the monadic fragment, a literal can contain at most one free variable. Thus, F^{\prime} cannot contain x free, which is a contradiction to F containing quantifiers. Thus, F only contains literals and hence has the desired shape.
The case for $\forall x F$ is similar.

Logic is in the eye of the logician.

- Gloria Steinem

