Technical University of Munich Chair for Logic and Verification

Prof. Tobias Nipkow

The tutorial takes place on $06.07,12-14$.

Exercise 12.1. [Loś-Vaught Test]

Let T be an L-theory with no finite models. Let $\kappa \geq|L|$ be a cardinal. Show that if any two models of size κ for T are elementarily equivalent, then T is complete.

You can assume the following without a proof:
Theorem 1 (Generalised Löwenheim-Skolem Theorems). Let S be a set of formulas in a language of cardinality λ, and assume that S has some infinite model. Then for every infinite cardinal $\kappa \geq \lambda$, there is a model of cardinality κ for S.

Exercise 12.2. [QE for DLO]

Use the quantifier-elimination procedure for DLOs to check whether the following formula is a member of $T h(D L O)$:

$$
\exists x \forall y \exists z((x<y \vee z<x) \wedge y<z)
$$

Exercise 12.3. [Fourier-Motzkin Elimination]

Apply the Fourier-Motzkin Elimination to check the following sentences:

1. $\exists x \exists y(2 \cdot x+3 \cdot y=7 \wedge x<y \wedge 0<x)$
2. $\exists x \exists y(3 \cdot x+3 \cdot y<8 \wedge 8<3 \cdot x+2 \cdot y)$

Exercise 12.4. [Ferrante-Rackoff Elimination]
Apply the Ferrante-Rackoff Elimination to check the following sentence:

$$
\exists x(\exists y(x=2 \cdot y) \rightarrow(2 \cdot x \geq 0 \vee 3 \cdot x<2))
$$

Homework 12.1. [Subtraction Logic]
$(+++)$
We consider a fragment of linear arithmetic, in which atomic formulas only take the form $x-y \leq c$ for variables x and y, and $c \in \mathbb{R}$.
For a finite set S of such difference constraints, we can define a corresponding inequality graph $G(V, E)$, where V is the set of variables of S, and E consists of all the edges (x, y) with weight c for all constraints $x-y \leq c$ of S. Show that the conjuction of all constraints from S is satisfiable iff G does not contain a negative cycle.
How can you use this theorem to obtain a procedure for deciding whether a formula is a member of this fragment where all variables and constants are of the domain \mathbb{Z} ?

Homework 12.2. [Min, Max, Abs]

1. Show that $\operatorname{Th}(\mathbb{R}, 0,1,<,=,+, \min , \max)$ is decidable, where min and max return the minimum and maximum of two values.
2. Show that $\operatorname{Th}(\mathbb{R}, 0,1,<,=,+, \min , \max ,|\cdot|)$ is decidable, where $|\cdot|$ is the absolute value.
Homework 12.3. [Optimising DLO]
DLO suffers from a heavy performance loss because after each step, a DNF needs to be reconstructed. We want to study an optimisation that may avoid this under some circumstances.

Assume that we want to eliminate an $\exists x F$ where

- F contains no negations and quantifiers, and
- F contains no \perp,
- there are only lower or only upper bounds for x in F.

Then, $\exists x F \equiv \top$. Prove the correctness of this optimisation.

In order to attain the impossible, one must attempt the absurd.

- Miguel de Cervantes

