Technical University of Munich
 Chair for Logic and Verification

Prof. Tobias Nipkow
Kevin Kappelmann

The tutorial takes place on $06.07,12-14$.

Exercise 12.1. [Eoś-Vaught Test]

Let T be an L-theory with no finite models. Let $\kappa \geq|L|$ be a cardinal. Show that if all models of size κ for T are elementarily equivalent, then T is complete.

You can assume the following without a proof:
Theorem 1 (Generalised Löwenheim-Skolem Theorems). Let S be a set of formulas in a language of cardinality λ, and assume that S has some infinite model. Then for every infinite cardinal $\kappa \geq \lambda$, there is a model of cardinality κ for S.

Solution:

Prove by contraposition. Assume T is not complete. Hence there is a sentence F such that $T \not \vDash F$ and $T \not \vDash \neg F$. Thus $T \cup\{F\}$ and $T \cup\{\neg F\}$ are both satisfiable. Hence there are $\mathcal{M} \models T \cup\{F\}$ and $\mathcal{M}^{\prime} \models T \cup\{\neg F\}$. As both are models of T, we know that both models are infinite by assumption.

Now by Löwenheim-Skolem, there are $\mathcal{M}_{\kappa} \models T \cup\{F\}$ and $\mathcal{M}_{\kappa}^{\prime} \models T \cup\{\neg F\}$ of cardinality κ. But all models of size κ of T are elementarily equivalent, contradiction.

Exercise 12.2. [QE for DLO]

Use the quantifier-elimination procedure for DLOs to check whether the following formula is a member of $T h(D L O)$:

$$
\exists x \forall y \exists z((x<y \vee z<x) \wedge y<z)
$$

Solution:

$$
\begin{array}{ll}
& \exists x \forall y \exists z((x<y \vee z<x) \wedge y<z) \\
\Longleftrightarrow{ }_{D L O} & \exists x \forall y(\exists z(x<y \wedge y<z) \vee \exists z(z<x \wedge y<z)) \\
\Longleftrightarrow{ }_{D L O} & \exists x \forall y((x<y \wedge \exists z(y<z)) \vee \exists z(z<x \wedge y<z)) \\
\Longleftrightarrow{ }_{D L O} & \exists x \forall y((x<y \wedge \top) \vee \exists z(z<x \wedge y<z)) \\
\Longleftrightarrow_{D L O} & \exists x \forall y(x<y \vee y<x) \\
\Longleftrightarrow_{D L O} & \exists x \neg \exists y \neg(x<y \vee y<x) \\
\Longleftrightarrow_{D L O} & \exists x \neg \exists y((y<x \vee x=y) \wedge(x<y \vee x=y)) \\
\Longleftrightarrow{ }_{D L O} & \exists x \neg \exists y((y<x \wedge x<y) \vee(y<x \wedge x=y) \vee(x=y \wedge x<y) \vee(x=y)) \\
\Longleftrightarrow{ }_{D L O} & \exists x \neg \exists y(\perp \vee \perp \vee \perp \vee(x=y)) \\
\Longleftrightarrow{ }_{D L O} & \exists x \neg \top \\
\Longleftrightarrow{ }_{D L O} & \perp
\end{array}
$$

Exercise 12.3. [Fourier-Motzkin Elimination]

Apply the Fourier-Motzkin Elimination to check the following sentences:

1. $\exists x \exists y(2 \cdot x+3 \cdot y=7 \wedge x<y \wedge 0<x)$
2. $\exists x \exists y(3 \cdot x+3 \cdot y<8 \wedge 8<3 \cdot x+2 \cdot y)$

Solution:

$$
\begin{aligned}
& \exists x \exists y(2 \cdot x+3 \cdot y=7 \wedge x<y \wedge 0<x) \\
& \Longleftrightarrow R_{+} \quad \exists x\left(\exists y\left(y=\frac{7}{3}-\frac{2}{3} \cdot x \wedge x<y\right) \wedge 0<x\right) \\
& \Longleftrightarrow R_{+} \quad \exists x\left(x<\frac{7}{3}-\frac{2}{3} \cdot x \wedge 0<x\right) \\
& \Longleftrightarrow R_{+} \quad \exists x\left(x<\frac{7}{5} \wedge 0<x\right) \\
& \Longleftrightarrow_{R_{+}} 0<\frac{7}{5} \Longleftrightarrow R_{+} \top \\
& \exists x \exists y(3 \cdot x+3 \cdot y<8 \wedge 8<3 \cdot x+2 \cdot y) \\
& \Longleftrightarrow_{R_{+}} \quad \exists x \exists y\left(y<\frac{8}{3}-x \wedge 4-\frac{3}{2} \cdot x<y\right) \\
& \Longleftrightarrow R_{+} \quad \exists x\left(4-\frac{3}{2} \cdot x<\frac{8}{3}-x\right) \\
& \Longleftrightarrow{ }_{R_{+}} \exists x\left(\frac{8}{3}<x\right) \Longleftrightarrow_{R_{+}} \top
\end{aligned}
$$

Homework 12.1. [Subtraction Logic]
$(+++)$
We consider a fragment of linear arithmetic, in which atomic formulas only take the form $x-y \leq c$ for variables x and y, and $c \in \mathbb{R}$.

For a finite set S of such difference constraints, we can define a corresponding inequality graph $G(V, E)$, where V is the set of variables of S, and E consists of all the edges (x, y) with weight c for all constraints $x-y \leq c$ of S. Show that the conjuction of all constraints from S is satisfiable iff G does not contain a negative cycle.
How can you use this theorem to obtain a procedure for deciding whether a formula is a member of this fragment where all variables and constants are of the domain \mathbb{Z} ?

Solution:

First part: see here, slide 4.
Second part: We first replace any $x=y$ by $x-y \leq 0 \wedge y-x \leq 0$. We can replace any $\neg(x-y \leq 0)$ by $x-y>0 \equiv y-x<0 \equiv y-x \leq-1$. Note that the final step is only possible in \mathbb{Z}. For \mathbb{R}, one would instead have to symbolically compute with a "sufficiently small" δ instead of -1 . We can then use the Bellman-Ford algorithm to detect negative cycles.

Homework 12.2. [Min, Max, Abs]

1. Show that $\operatorname{Th}(\mathbb{R}, 0,1,<,=,+, \min , \max)$ is decidable, where min and max return the minimum and maximum of two values.
2. Show that $\operatorname{Th}(\mathbb{R}, 0,1,<,=,+, \min , \max ,|\cdot|)$ is decidable, where $|\cdot|$ is the absolute value.

Solution:

1. Extend Fourier-Motzkin by new steps before applying qe1ca to $\exists x\left(A_{1} \wedge \cdots \wedge A_{n}\right) \equiv$: $\exists x F$:
(a) If there is some term $\min \left(t_{1}, t_{2}\right)$ in F, then replace the formula by

$$
\exists x\left(\left(t_{1}<t_{2} \rightarrow F\left[t_{1} / \min \left(t_{1}, t_{2}\right)\right]\right) \vee\left(t_{2}<t_{1} \vee t_{2}=t_{1} \rightarrow F\left[t_{2} / \min \left(t_{1}, t_{2}\right)\right]\right)\right)
$$

where by abuse of notation, $F\left[t_{1} / \min \left(t_{1}, t_{2}\right)\right]$ is the formula obtained by replacing all occurences of $\min \left(t_{1}, t_{2}\right)$ by t_{1}. Then renormalise the formula and repeat.
(b) If there is some term $\max \left(t_{1}, t_{2}\right)$ in F, then replace the formula by

$$
\exists x\left(\left(t_{1}<t_{2} \rightarrow F\left[t_{2} / \max \left(t_{1}, t_{2}\right)\right]\right) \vee\left(t_{2}<t_{1} \vee t_{2}=t_{1} \rightarrow F\left[t_{1} / \max \left(t_{1}, t_{2}\right)\right]\right)\right)
$$

Then renormalise the formula and repeat.
As a result, we reduced the theory to the theory of linear real arithmetic, which is decidable.

1. Similar to the previous exercise with an additional step: If there is some term $c \cdot|t|$ in F, then replace the formula by

$$
\exists x((0<t \vee 0=t \rightarrow F[t /|t|]) \vee(t<0 \rightarrow F[(-c) \cdot t / c \cdot|t|]))
$$

Then renormalise the formula and repeat.

Homework 12.3. [Optimising DLO]

DLO suffers from a heavy performance loss because after each step, a DNF needs to be reconstructed. We want to study an optimisation that may avoid this under some circumstances.
Assume that we want to eliminate an $\exists x F$ where

- F contains no negations and quantifiers, and
- F contains no \perp,
- there are only lower or only upper bounds for x in F.

Then, $\exists x F \equiv \top$. Prove the correctness of this optimisation.

Solution:

WLOG assume that F only contains upper bounds (the other case is analagous). Let \vec{y} be the free variables of $\exists F$. We proof by induction on F that there is a witness w for any instantiation $F[\vec{u} / \vec{y}]$ such that $F[\vec{u} / \vec{y}][t / x] \equiv \top$ for any $t \leq w$.
Case T: any w does the job.
Case $y<z$: if $y \neq x$ then any w does the job. If $y=x$ then for any instantiation u of z, we can obtain by the axioms of DLO some t such that $t<z$. We set $w:=t$.
Case $F_{1} \vee F_{2}$: then by induction $F_{1}[\vec{u} / \vec{y}][t / x] \equiv \top$ for some w_{1} and all $t \leq w_{1}$ and hence $F_{1}[\vec{u} / \vec{y}][t / x] \vee F_{2}[\vec{u} / \vec{y}][t / x] \equiv \top \vee F_{2}[\vec{u} / \vec{y}][t / x] \equiv \top$
Case $F_{1} \wedge F_{2}$: then by induction $F_{i}[\vec{u} / \vec{y}]\left[t_{i} / x\right] \equiv \top$ for some w_{i} and all $t_{i} \leq w_{i}$. Set $w:=w_{1}$ if $w_{1}<w_{2}$ and $w:=w_{2}$ otherwise. Then $F_{1}[\vec{u} / \vec{y}][t / x] \wedge F_{2}[\vec{u} / \vec{y}][t / x] \equiv \top \wedge \top \equiv \top$ for all $t \leq w$.
all other cases: excluded by assumption.

In order to attain the impossible, one must attempt the absurd.

