LOGIC EXERCISES

TECHNICAL UNIVERSITY OF MUNICH CHAIR FOR LOGIC AND VERIFICATION

Prof. Tobias Nipkow Kevin Kappelmann

SS 2021

EXERCISE SHEET 13

09.08.2021

The tutorial takes place on 13.07, 12–14.

Exercise 13.1. [Ferrante–Rackoff Elimination]

Apply the Ferrante–Rackoff Elimination to check the following sentence:

$$\exists x (\exists y (x = 2 \cdot y) \to (2 \cdot x \ge 0 \lor 3 \cdot x < 2))$$

Solution:

$$\exists x (\exists y (x = 2 \cdot y) \rightarrow (2 \cdot x \ge 0 \lor 3 \cdot x < 2))$$

$$\Leftrightarrow_{R_{+}} \quad \exists x (\top \rightarrow (2 \cdot x \ge 0 \lor 3 \cdot x < 2))$$

$$\Leftrightarrow_{R_{+}} \quad \exists x (2 \cdot x \ge 0 \lor 3 \cdot x < 2)$$

$$\Leftrightarrow_{R_{+}} \quad \exists x \left(0 < x \lor x = 0 \lor x < \frac{2}{3} \right)$$

$$\Leftrightarrow_{R_{+}} \quad \left(\top \lor \top \lor \left(0 < 0 \lor 0 = 0 \lor 0 < \frac{2}{3} \right) \lor \cdots \right)$$

$$\Leftrightarrow_{R_{+}} \quad \top$$

Exercise 13.2. [Presburger Arithmetic]

Eliminate the quantifiers from the following formulas according to Presburger arithmetic:

- 1. $\forall y(3 < x + 2y \lor 2x + y < 3)$
- 2. $\forall x(2 \mid x \rightarrow (2x \ge 0 \lor 3x < 2))$

Solution:

$$\forall y (3 < x + 2y \lor 2x + y < 3)$$

$$\Leftrightarrow_{\mathcal{P}} \quad \neg \exists y \neg (3 < x + 2y \lor 2x + y < 3)$$

$$\Leftrightarrow_{\mathcal{P}} \quad \neg \exists y (3 \ge x + 2y \land 2x + y \ge 3)$$

$$\Leftrightarrow_{\mathcal{P}} \quad \neg \exists y (2y \le 3 - x \land 3 - 2x \le y)$$

$$\Leftrightarrow_{\mathcal{P}} \quad \neg \exists y (2y \le 3 - x \land 6 - 4x \le 2y)$$

$$\Leftrightarrow_{\mathcal{P}} \quad \neg \exists z (z \le 3 - x \land 6 - 4x \le z \land 2 \mid z)$$

$$\Leftrightarrow_{\mathcal{P}} \quad \neg ((6 - 4x \le 3 - x \land 2 \mid 6 - 4x) \lor (7 - 4x \le 3 - x \land 2 \mid 7 - 4x))$$

$$\forall x(2 \mid x \to (2x \ge 0 \lor 3x < 2)) \Leftrightarrow_{\mathcal{P}} \neg \exists x \neg (2 \mid x \to (2x \ge 0 \lor 3x < 2)) \Leftrightarrow_{\mathcal{P}} \neg \exists x(2 \mid x \land 2x < 0 \land 3x \ge 2) \Leftrightarrow_{\mathcal{P}} \neg \exists x(2 \mid x \land 2x \le -1 \land 2 \le 3x) \Leftrightarrow_{\mathcal{P}} \neg \exists x(12 \mid 6x \land 6x \le -3 \land 4 \le 6x) \Leftrightarrow_{\mathcal{P}} \neg \exists z(12 \mid z \land z \le -3 \land 4 \le z \land 6 \mid z)$$

$$\dots$$

Exercise 13.3. [Quantifier Elimination for $Th(\mathbb{N}, 0, S, =)$]

Give a quantifier-elimination procedure for $Th(\mathbb{N}, 0, S, =)$ where S is the successor operation on natural numbers, i.e. S(n) = n + 1.

Hint: a = b iff $S^k(a) = S^k(b)$ for any $a, b, k \in \mathbb{N}$.

Solution:

We assume $F = \exists x (A_1 \land \ldots \land A_n)$ where x occurs in all A_i and each A_i is of the form

$$S^k(x) = S^m(t)$$
 or $S^k(x) \neq S^m(t)$

where t is 0 or a variable (using symmetry of =).

If x occurs on both sides of an atom A_i , we can compare the number of successors and replace it with \perp or \top , i.e. $Th(\mathbb{N}, 0, S) \models (S^k(x) = S^l(x)) \iff k = l$. Hence, we can assume that $x \neq t$.

We have to distinguish two cases:

- 1. All A_i only use \neq , but not =: We can return \top because x can always be chosen to be different from finitely many natural numbers.
- 2. There is at least one A_i of the form $S^m(x) = t$ where $x \neq t$.

We replace A_i as follows:

- If m > 0, we add the constraints $t \neq 0 \land \ldots \land t \neq S^{m-1}(0)$ to ensure that the solution for x is non-negative.
- Otherwise, replace it with \top .

The other A_j $(i \neq j)$ can be replaced as follows: Let A_j be $S^k(x) = u$. Using the hint, first increment both sides by m: $S^{k+m}(x) = S^m(u)$. Then, substitute A_i , resulting in $S^k(t) = S^m(u)$.

This works similarly for inequality, resulting in $S^k(t) \neq S^m(u)$.

For optimization purposes, we could also assume that either side of the equalities/inequalities contains no successor application. If they do, we can decrement until at least one side is 0 or a variable.

LOGIC

(++)

Homework 13.1. [Under Presburger]

Perform Presburger arithmetic quantifier elimination for each of the following formulas:

- 1. $\forall x \forall y (0 < y \land x < y \rightarrow x + 1 < 2y)$
- 2. $\forall x (\exists y (x = 2y \land 2 \mid y) \rightarrow 4 \mid x)$

Solution:

 $\forall x \forall y (0 < y \land x < y \to x + 1 < 2y)$ $\neg \exists x \exists y \neg (0 < y \land x < y \rightarrow x + 1 < 2y)$ $\Leftrightarrow_{\mathcal{D}}$ $\iff_{\mathcal{P}} \quad \neg \exists x \exists y (0 < y \land x < y \land x + 1 > 2y)$ $\iff_{\mathcal{P}} \neg \exists x \exists y (1 < y \land x + 1 < y \land 2y < x + 1)$ $\iff_{\mathcal{P}} \neg \exists x \exists z (2 \le z \land 2x + 2 \le z \land z \le x + 1 \land 2 \mid z)$ $\iff_{\mathcal{P}} \neg \exists x ((2x+2 \le 2 \land 2 \le x+1 \land 2 \mid 2) \lor (2x+2 \le 3 \land 3 \le x+1 \land 2 \mid 3))$ $\vee (2 \leq 2x + 2 \wedge 2x + 2 \leq x + 1 \wedge 2 \mid 2x + 2) \vee (2 \leq 2x + 3 \wedge 2x + 3 \leq x + 1 \wedge 2 \mid 2x + 3))$ $\neg \exists x ((2x \le 0 \land 1 \le x) \lor (0 \le 2x \land x \le -1 \land 2 \mid 2x + 2) \lor (-1 \le 2x \land x \le -2 \land 2 \mid 2x + 3))$ $\iff_{\mathcal{P}}$ $\iff_{\mathcal{P}} \neg \exists x ((2x \le 0 \land 2 \le 2x) \lor (0 \le 2x \land 2x \le -2 \land 2 \mid 2x + 2) \lor (-1 \le 2x \land 2x \le -4 \land 2 \mid 2x + 3))$ $\iff_{\mathcal{P}} \neg \exists z ((z < 0 \land 2 < z \land 2 \mid z))$ $\lor (0 \le z \land z \le -2 \land 2 \mid z + 2 \land 2 \mid z) \lor (-1 \le z \land z \le -4 \land 2 \mid z + 3 \land 2 \mid z))$ $\iff_{\mathcal{P}} \neg ((2 \le 0 \land 2 \mid 2) \lor (3 \le 0 \dots))$ $\vee (0 < -2 \land 2 \mid 2 \land 2 \mid 0) \lor (1 < -2 \dots) \lor (-1 < -4 \dots) \lor (0 < -4 \dots))$ $\neg \bot$ $\Rightarrow_{\mathcal{D}}$ Т $\Leftrightarrow_{\mathcal{D}}$

$$\forall x (\exists y (x = 2y \land 2 \mid y) \rightarrow 4 \mid x)$$

$$\Leftrightarrow_{\mathcal{P}} \neg \exists x \neg (\exists y (x = 2y \land 2 \mid y) \rightarrow 4 \mid x)$$

$$\Leftrightarrow_{\mathcal{P}} \neg \exists x (\exists y (x = 2y \land 2 \mid y) \land \neg (4 \mid x))$$

$$\Leftrightarrow_{\mathcal{P}} \neg \exists x \exists y (x = 2y \land 2 \mid y \land \neg (4 \mid x))$$

$$\Leftrightarrow_{\mathcal{P}} \neg \exists x \exists y (x \leq 2y \land 2y \leq x \land 2 \mid y \land \neg (4 \mid x))$$

$$\Leftrightarrow_{\mathcal{P}} \neg \exists x \exists x (x \leq z \land z \leq x \land 4 \mid z \land 2 \mid z \land \neg (4 \mid x))$$

$$\Leftrightarrow_{\mathcal{P}} \neg \exists x (x \leq x \land 4 \mid x \land 2 \mid x \land \neg (4 \mid x))$$

$$\Leftrightarrow_{\mathcal{P}} \neg \bigvee_{i=1}^{3} \exists x (4 \mid x \land 2 \mid x \land 4 \mid x + i)$$

$$\Leftrightarrow_{\mathcal{P}} \neg \bigvee_{i=1}^{3} (4 \mid j \land 2 \mid j \land 4 \mid j + i)$$

$$\Leftrightarrow_{\mathcal{P}} \neg \bot$$

Homework 13.2. [Quantifier Elimination for $Th(\mathbb{Z}, 0, S, P, =, <)$] (+++)Give a quantifier-elimination procedure for $Th(\mathbb{Z}, 0, S, P, =, <)$ where S is the successor and P the predecessor operation on integers, i.e. S(n) = n + 1 and P(n) = n - 1. Do not use Presburger arithmetic; give a direct algorithm.

Solution:

At any point, we normalise any term t such that it might contain S or P but not both:

- 1. If $t = S^k(P^m(u))$, replace t by $P^{m-k}(u)$ if $k \leq m$ and $S^{k-m}(u)$ otherwise.
- 2. Case $t = P^k(S^m(u))$: analogous.

Moreover, we apply the following transformations:

- 1. Replace $\neg(t < u)$ by $t = u \lor u < t$.
- 2. Replace t = u by $t < S(u) \land u < S(t)$.
- 3. Replace $t \neq u$ by $t < u \lor u < t$.

We can then assume that we have some $F = \exists x (A_1 \land \ldots \land A_n)$ where x occurs in all A_i and each A_i is of the form

$$f^{k}(x) < g^{m}(t)$$
 or $f^{k}(t) < g^{m}(x)$

where t is 0 or a variable and $f, g \in \{S, P\}$. First consider the case t = x:

- 1. Replace $S^k(x) < S^m(x)$ by \top if k < m and \perp otherwise.
- 2. Replace $P^k(x) < P^m(x)$ by \top if k > m and \perp otherwise.
- 3. Replace $P^k(x) < S^m(x)$ by \top .
- 4. Replace $S^k(x) < P^m(x)$ by \perp .

Let F_x be the conjunction of all these atoms. We then bring all remaining A_i into canonical form for x:

- 1. Replace $S^k(x) < g^m(t)$ by $x < P^k(g^m(t))$
- 2. Replace $P^k(x) < g^m(t)$ by $x < S^k(g^m(t))$
- 3. Replace $f^k(t) < S^m(x)$ by $P^m(f^k(t)) < x$
- 4. Replace $f^k(t) < P^m(x)$ by $S^m(f^k(t)) < x$

Let U be the set of these atoms. We then replace F by

$$F_x \wedge \bigwedge_{(l < x) \in U} \bigwedge_{(x < u) \in U} S(l) < u.$$

It is always easy to be logical. It is almost impossible to be logical to the bitter end.

— Albert Camus