The tutorial takes place on 13.07, 12-14.

Exercise 13.1. [Ferrante-Rackoff Elimination]

Apply the Ferrante-Rackoff Elimination to check the following sentence:

$$
\exists x(\exists y(x=2 \cdot y) \rightarrow(2 \cdot x \geq 0 \vee 3 \cdot x<2))
$$

Solution:

$$
\begin{array}{ll}
& \exists x(\exists y(x=2 \cdot y) \rightarrow(2 \cdot x \geq 0 \vee 3 \cdot x<2)) \\
\Longleftrightarrow & \exists x(\top \rightarrow(2 \cdot x \geq 0 \vee 3 \cdot x<2)) \\
\Longleftrightarrow R_{+} & \exists x(2 \cdot x \geq 0 \vee 3 \cdot x<2) \\
\Longleftrightarrow_{R_{+}} & \exists x\left(0<x \vee x=0 \vee x<\frac{2}{3}\right) \\
\Longleftrightarrow_{R_{+}} \quad\left(\top \vee \top \vee\left(0<0 \vee 0=0 \vee 0<\frac{2}{3}\right) \vee \cdots\right) \\
\Longleftrightarrow_{R_{+}} \quad \top
\end{array}
$$

Exercise 13.2. [Presburger Arithmetic]

Eliminate the quantifiers from the following formulas according to Presburger arithmetic:

1. $\forall y(3<x+2 y \vee 2 x+y<3)$
2. $\forall x(2 \mid x \rightarrow(2 x \geq 0 \vee 3 x<2))$

Solution:

$$
\begin{aligned}
& \forall y(3<x+2 y \vee 2 x+y<3) \\
& \Longleftrightarrow_{\mathcal{P}} \quad \neg \exists y \neg(3<x+2 y \vee 2 x+y<3) \\
& \Longleftrightarrow_{\mathcal{P}} \quad \neg \exists y(3 \geq x+2 y \wedge 2 x+y \geq 3) \\
& \Longleftrightarrow \mathcal{P} \quad \neg \exists y(2 y \leq 3-x \wedge 3-2 x \leq y) \\
& \Longleftrightarrow_{\mathcal{P}} \quad \neg \exists y(2 y \leq 3-x \wedge 6-4 x \leq 2 y) \\
& \Longleftrightarrow \mathcal{P}_{\mathcal{P}} \quad \neg \exists z(z \leq 3-x \wedge 6-4 x \leq z \wedge 2 \mid z) \\
& \Longleftrightarrow_{\mathcal{P}} \quad \neg((6-4 x \leq 3-x \wedge 2 \mid 6-4 x) \vee(7-4 x \leq 3-x \wedge 2 \mid 7-4 x)) \\
& \forall x(2 \mid x \rightarrow(2 x \geq 0 \vee 3 x<2)) \\
& \Longleftrightarrow_{\mathcal{P}} \quad \neg \exists x \neg(2 \mid x \rightarrow(2 x \geq 0 \vee 3 x<2)) \\
& \Longleftrightarrow_{\mathcal{P}} \quad \neg \exists x(2 \mid x \wedge 2 x<0 \wedge 3 x \geq 2) \\
& \Longleftrightarrow_{\mathcal{P}} \quad \neg \exists x(2 \mid x \wedge 2 x \leq-1 \wedge 2 \leq 3 x) \\
& \Longleftrightarrow_{\mathcal{P}} \quad \neg \exists x(12 \mid 6 x \wedge 6 x \leq-3 \wedge 4 \leq 6 x) \\
& \Longleftrightarrow_{\mathcal{P}} \quad \neg \exists z(12|z \wedge z \leq-3 \wedge 4 \leq z \wedge 6| z) \\
& \Longleftrightarrow_{\mathcal{P}} \top
\end{aligned}
$$

Exercise 13.3. [Quantifier Elimination for $\operatorname{Th}(\mathbb{N}, 0, S,=)]$

Give a quantifier-elimination procedure for $\operatorname{Th}(\mathbb{N}, 0, S,=)$ where S is the successor operation on natural numbers, i.e. $S(n)=n+1$.
Hint: $a=b$ iff $S^{k}(a)=S^{k}(b)$ for any $a, b, k \in \mathbb{N}$.

Solution:

We assume $F=\exists x\left(A_{1} \wedge \ldots \wedge A_{n}\right)$ where x occurs in all A_{i} and each A_{i} is of the form

$$
S^{k}(x)=S^{m}(t) \text { or } S^{k}(x) \neq S^{m}(t)
$$

where t is 0 or a variable (using symmetry of $=$).
If x occurs on both sides of an atom A_{i}, we can compare the number of successors and replace it with \perp or \top, i.e. $T h(\mathbb{N}, 0, S) \models\left(S^{k}(x)=S^{l}(x)\right) \Longleftrightarrow k=l$. Hence, we can assume that $x \neq t$.
We have to distinguish two cases:

1. All A_{i} only use \neq, but not $=$: We can return T because x can always be chosen to be different from finitely many natural numbers.
2. There is at least one A_{i} of the form $S^{m}(x)=t$ where $x \neq t$.

We replace A_{i} as follows:

- If $m>0$, we add the constraints $t \neq 0 \wedge \ldots \wedge t \neq S^{m-1}(0)$ to ensure that the solution for x is non-negative.
- Otherwise, replace it with T.

The other $A_{j}(i \neq j)$ can be replaced as follows: Let A_{j} be $S^{k}(x)=u$. Using the hint, first increment both sides by $m: S^{k+m}(x)=S^{m}(u)$. Then, substitute A_{i}, resulting in $S^{k}(t)=S^{m}(u)$.
This works similarly for inequality, resulting in $S^{k}(t) \neq S^{m}(u)$.
For optimization purposes, we could also assume that either side of the equalities/inequalities contains no successor application. If they do, we can decrement until at least one side is 0 or a variable.

Homework 13.1. [Under Presburger]

$(++)$
Perform Presburger arithmetic quantifier elimination for each of the following formulas:

1. $\forall x \forall y(0<y \wedge x<y \rightarrow x+1<2 y)$
2. $\forall x(\exists y(x=2 y \wedge 2 \mid y) \rightarrow 4 \mid x)$

Solution:

$$
\begin{array}{ll}
& \forall x \forall y(0<y \wedge x<y \rightarrow x+1<2 y) \\
\Longleftrightarrow \Longleftrightarrow_{\mathcal{P}} & \neg \exists x \exists y \neg(0<y \wedge x<y \rightarrow x+1<2 y) \\
\Longleftrightarrow & \neg \exists x \exists y(0<y \wedge x<y \wedge x+1 \geq 2 y) \\
\Longleftrightarrow{ }_{\mathcal{P}} & \neg \exists x \exists y(1 \leq y \wedge x+1 \leq y \wedge 2 y \leq x+1) \\
\Longleftrightarrow \mathcal{P}_{\mathcal{P}} & \neg \exists x \exists z(2 \leq z \wedge 2 x+2 \leq z \wedge z \leq x+1 \wedge 2 \mid z) \\
\Longleftrightarrow & \neg \exists x((2 x+2 \leq 2 \wedge 2 \leq x+1 \wedge 2 \mid 2) \vee(2 x+2 \leq 3 \wedge 3 \leq x+1 \wedge 2 \mid 3) \\
& \vee(2 \leq 2 x+2 \wedge 2 x+2 \leq x+1 \wedge 2 \mid 2 x+2) \vee(2 \leq 2 x+3 \wedge 2 x+3 \leq x+1 \wedge 2 \mid 2 x+3)) \\
\Longleftrightarrow_{\mathcal{P}} & \neg \exists x((2 x \leq 0 \wedge 1 \leq x) \vee(0 \leq 2 x \wedge x \leq-1 \wedge 2 \mid 2 x+2) \vee(-1 \leq 2 x \wedge x \leq-2 \wedge 2 \mid 2 x+3)) \\
\Longleftrightarrow{ }_{\mathcal{P}} & \neg \exists x((2 x \leq 0 \wedge 2 \leq 2 x) \vee(0 \leq 2 x \wedge 2 x \leq-2 \wedge 2 \mid 2 x+2) \vee(-1 \leq 2 x \wedge 2 x \leq-4 \wedge 2 \mid 2 x+3)) \\
\Longleftrightarrow \mathcal{P}_{\mathcal{P}} & \neg \exists z((z \leq 0 \wedge 2 \leq z \wedge 2 \mid z) \\
& \vee(0 \leq z \wedge z \leq-2 \wedge 2|z+2 \wedge 2| z) \vee(-1 \leq z \wedge z \leq-4 \wedge 2|z+3 \wedge 2| z)) \\
\Longleftrightarrow & \neg((2 \leq 0 \wedge 2 \mid 2) \vee(3 \leq 0 \ldots) \\
& \vee(0 \leq-2 \wedge 2|2 \wedge 2| 0) \vee(1 \leq-2 \ldots) \vee(-1 \leq-4 \ldots) \vee(0 \leq-4 \ldots)) \\
\Longleftrightarrow & \neg \perp \\
\Longleftrightarrow \mathcal{P} & \quad \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \forall x(\exists y(x=2 y \wedge 2 \mid y) \rightarrow 4 \mid x) \\
& \Longleftrightarrow_{\mathcal{P}} \quad \neg \exists x \neg(\exists y(x=2 y \wedge 2 \mid y) \rightarrow 4 \mid x) \\
& \Longleftrightarrow_{\mathcal{P}} \quad \neg \exists x(\exists y(x=2 y \wedge 2 \mid y) \wedge \neg(4 \mid x)) \\
& \Longleftrightarrow_{\mathcal{P}} \quad \neg \exists x \exists y(x=2 y \wedge 2 \mid y \wedge \neg(4 \mid x)) \\
& \Longleftrightarrow_{\mathcal{P}} \quad \neg \exists x \exists y(x \leq 2 y \wedge 2 y \leq x \wedge 2 \mid y \wedge \neg(4 \mid x)) \\
& \Longleftrightarrow_{\mathcal{P}} \quad \neg \exists x \exists y(x \leq 2 y \wedge 2 y \leq x \wedge 4 \mid 2 y \wedge \neg(4 \mid x)) \\
& \Longleftrightarrow_{\mathcal{P}} \quad \neg \exists x \exists z(x \leq z \wedge z \leq x \wedge 4|z \wedge 2| z \wedge \neg(4 \mid x)) \\
& \Longleftrightarrow_{\mathcal{P}} \quad \neg \exists x(x \leq x \wedge 4|x \wedge 2| x \wedge \neg(4 \mid x)) \\
& \Longleftrightarrow_{\mathcal{P}} \quad \neg \bigvee_{i=1}^{3} \exists x(4|x \wedge 2| x \wedge 4 \mid x+i) \\
& \Longleftrightarrow_{\mathcal{P}} \quad \neg \bigvee_{i=1}^{3} \bigvee_{j=0}^{3}(4|j \wedge 2| j \wedge 4 \mid j+i) \\
& \Longleftrightarrow_{\mathcal{P}} \quad \neg \perp
\end{aligned}
$$

Homework 13.2. [Quantifier Elimination for $\operatorname{Th}(\mathbb{Z}, 0, S, P,=,<)] \quad(+++)$
Give a quantifier-elimination procedure for $\operatorname{Th}(\mathbb{Z}, 0, S, P,=,<)$ where S is the successor and P the predecessor operation on integers, i.e. $S(n)=n+1$ and $P(n)=n-1$. Do not use Presburger arithmetic; give a direct algorithm.

Solution:

At any point, we normalise any term t such that it might contain S or P but not both:

1. If $t=S^{k}\left(P^{m}(u)\right)$, replace t by $P^{m-k}(u)$ if $k \leq m$ and $S^{k-m}(u)$ otherwise.
2. Case $t=P^{k}\left(S^{m}(u)\right)$: analogous.

Moreover, we apply the following transformations:

1. Replace $\neg(t<u)$ by $t=u \vee u<t$.
2. Replace $t=u$ by $t<S(u) \wedge u<S(t)$.
3. Replace $t \neq u$ by $t<u \vee u<t$.

We can then assume that we have some $F=\exists x\left(A_{1} \wedge \ldots \wedge A_{n}\right)$ where x occurs in all A_{i} and each A_{i} is of the form

$$
f^{k}(x)<g^{m}(t) \text { or } f^{k}(t)<g^{m}(x)
$$

where t is 0 or a variable and $f, g \in\{S, P\}$. First consider the case $t=x$:

1. Replace $S^{k}(x)<S^{m}(x)$ by \top if $k<m$ and \perp otherwise.
2. Replace $P^{k}(x)<P^{m}(x)$ by \top if $k>m$ and \perp otherwise.
3. Replace $P^{k}(x)<S^{m}(x)$ by \top.
4. Replace $S^{k}(x)<P^{m}(x)$ by \perp.

Let F_{x} be the conjunction of all these atoms. We then bring all remaining A_{i} into canonical form for x :

1. Replace $S^{k}(x)<g^{m}(t)$ by $x<P^{k}\left(g^{m}(t)\right)$
2. Replace $P^{k}(x)<g^{m}(t)$ by $x<S^{k}\left(g^{m}(t)\right)$
3. Replace $f^{k}(t)<S^{m}(x)$ by $P^{m}\left(f^{k}(t)\right)<x$
4. Replace $f^{k}(t)<P^{m}(x)$ by $S^{m}\left(f^{k}(t)\right)<x$

Let U be the set of these atoms. We then replace F by

$$
F_{x} \wedge \bigwedge_{(l<x) \in U} \bigwedge_{(x<u) \in U} S(l)<u
$$

It is always easy to be logical.
It is almost impossible to be logical to the bitter end.

