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Exercise 13.1. [Ferrante–Rackoff Elimination]
Apply the Ferrante–Rackoff Elimination to check the following sentence:

∃x(∃y(x = 2 · y)→ (2 · x ≥ 0 ∨ 3 · x < 2))

Solution:

∃x(∃y(x = 2 · y)→ (2 · x ≥ 0 ∨ 3 · x < 2))

⇐⇒R+ ∃x(> → (2 · x ≥ 0 ∨ 3 · x < 2))

⇐⇒R+ ∃x(2 · x ≥ 0 ∨ 3 · x < 2)

⇐⇒R+ ∃x
(

0 < x ∨ x = 0 ∨ x <
2

3

)
⇐⇒R+

(
> ∨> ∨

(
0 < 0 ∨ 0 = 0 ∨ 0 <

2

3

)
∨ · · ·

)
⇐⇒R+ >



Exercise Sheet 13 Logic Page 2

Exercise 13.2. [Presburger Arithmetic]
Eliminate the quantifiers from the following formulas according to Presburger arithmetic:

1. ∀y(3 < x + 2y ∨ 2x + y < 3)

2. ∀x(2 | x→ (2x ≥ 0 ∨ 3x < 2))

Solution:

∀y(3 < x + 2y ∨ 2x + y < 3)

⇐⇒P ¬∃y¬(3 < x + 2y ∨ 2x + y < 3)

⇐⇒P ¬∃y(3 ≥ x + 2y ∧ 2x + y ≥ 3)

⇐⇒P ¬∃y(2y ≤ 3− x ∧ 3− 2x ≤ y)

⇐⇒P ¬∃y(2y ≤ 3− x ∧ 6− 4x ≤ 2y)

⇐⇒P ¬∃z(z ≤ 3− x ∧ 6− 4x ≤ z ∧ 2 | z)

⇐⇒P ¬((6− 4x ≤ 3− x ∧ 2 | 6− 4x) ∨ (7− 4x ≤ 3− x ∧ 2 | 7− 4x))

∀x(2 | x→ (2x ≥ 0 ∨ 3x < 2))

⇐⇒P ¬∃x¬(2 | x→ (2x ≥ 0 ∨ 3x < 2))

⇐⇒P ¬∃x(2 | x ∧ 2x < 0 ∧ 3x ≥ 2)

⇐⇒P ¬∃x(2 | x ∧ 2x ≤ −1 ∧ 2 ≤ 3x)

⇐⇒P ¬∃x(12 | 6x ∧ 6x ≤ −3 ∧ 4 ≤ 6x)

⇐⇒P ¬∃z(12 | z ∧ z ≤ −3 ∧ 4 ≤ z ∧ 6 | z)

. . .

⇐⇒P >
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Exercise 13.3. [Quantifier Elimination for Th(N, 0, S,=)]
Give a quantifier-elimination procedure for Th(N, 0, S,=) where S is the successor operation
on natural numbers, i.e. S(n) = n + 1.

Hint : a = b iff Sk(a) = Sk(b) for any a, b, k ∈ N.

Solution:
We assume F = ∃x(A1 ∧ . . . ∧ An) where x occurs in all Ai and each Ai is of the form

Sk(x) = Sm(t) or Sk(x) 6= Sm(t)

where t is 0 or a variable (using symmetry of =).

If x occurs on both sides of an atom Ai, we can compare the number of successors and replace
it with ⊥ or >, i.e. Th(N, 0, S) |= (Sk(x) = Sl(x)) ⇐⇒ k = l. Hence, we can assume that
x 6= t.

We have to distinguish two cases:

1. All Ai only use 6=, but not =: We can return > because x can always be chosen to be
different from finitely many natural numbers.

2. There is at least one Ai of the form Sm(x) = t where x 6= t.

We replace Ai as follows:

• If m > 0, we add the constraints t 6= 0 ∧ . . . ∧ t 6= Sm−1(0) to ensure that the
solution for x is non-negative.

• Otherwise, replace it with >.
The other Aj (i 6= j) can be replaced as follows: Let Aj be Sk(x) = u. Using the hint,
first increment both sides by m: Sk+m(x) = Sm(u). Then, substitute Ai, resulting in
Sk(t) = Sm(u).

This works similarly for inequality, resulting in Sk(t) 6= Sm(u).

For optimization purposes, we could also assume that either side of the equalities/inequalities
contains no successor application. If they do, we can decrement until at least one side is 0
or a variable.
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Homework 13.1. [Under Presburger] (++)
Perform Presburger arithmetic quantifier elimination for each of the following formulas:

1. ∀x∀y(0 < y ∧ x < y → x + 1 < 2y)

2. ∀x(∃y(x = 2y ∧ 2 | y)→ 4 | x)

Solution:

∀x∀y(0 < y ∧ x < y → x + 1 < 2y)

⇐⇒P ¬∃x∃y¬(0 < y ∧ x < y → x + 1 < 2y)

⇐⇒P ¬∃x∃y(0 < y ∧ x < y ∧ x + 1 ≥ 2y)

⇐⇒P ¬∃x∃y(1 ≤ y ∧ x + 1 ≤ y ∧ 2y ≤ x + 1)

⇐⇒P ¬∃x∃z(2 ≤ z ∧ 2x + 2 ≤ z ∧ z ≤ x + 1 ∧ 2 | z)

⇐⇒P ¬∃x
(
(2x + 2 ≤ 2 ∧ 2 ≤ x + 1 ∧ 2 | 2) ∨ (2x + 2 ≤ 3 ∧ 3 ≤ x + 1 ∧ 2 | 3)

∨ (2 ≤ 2x + 2 ∧ 2x + 2 ≤ x + 1 ∧ 2 | 2x + 2) ∨ (2 ≤ 2x + 3 ∧ 2x + 3 ≤ x + 1 ∧ 2 | 2x + 3)
)

⇐⇒P ¬∃x
(
(2x ≤ 0 ∧ 1 ≤ x) ∨ (0 ≤ 2x ∧ x ≤ −1 ∧ 2 | 2x + 2) ∨ (−1 ≤ 2x ∧ x ≤ −2 ∧ 2 | 2x + 3)

)
⇐⇒P ¬∃x

(
(2x ≤ 0 ∧ 2 ≤ 2x) ∨ (0 ≤ 2x ∧ 2x ≤ −2 ∧ 2 | 2x + 2) ∨ (−1 ≤ 2x ∧ 2x ≤ −4 ∧ 2 | 2x + 3)

)
⇐⇒P ¬∃z

(
(z ≤ 0 ∧ 2 ≤ z ∧ 2 | z)

∨ (0 ≤ z ∧ z ≤ −2 ∧ 2 | z + 2 ∧ 2 | z) ∨ (−1 ≤ z ∧ z ≤ −4 ∧ 2 | z + 3 ∧ 2 | z)
)

⇐⇒P ¬
(
(2 ≤ 0 ∧ 2 | 2) ∨ (3 ≤ 0 . . . )

∨ (0 ≤ −2 ∧ 2 | 2 ∧ 2 | 0) ∨ (1 ≤ −2 . . . ) ∨ (−1 ≤ −4 . . . ) ∨ (0 ≤ −4 . . . )
)

⇐⇒P ¬⊥
⇐⇒P >

∀x(∃y(x = 2y ∧ 2 | y)→ 4 | x)

⇐⇒P ¬∃x¬(∃y(x = 2y ∧ 2 | y)→ 4 | x)

⇐⇒P ¬∃x(∃y(x = 2y ∧ 2 | y) ∧ ¬(4 | x))

⇐⇒P ¬∃x∃y(x = 2y ∧ 2 | y ∧ ¬(4 | x))

⇐⇒P ¬∃x∃y(x ≤ 2y ∧ 2y ≤ x ∧ 2 | y ∧ ¬(4 | x))

⇐⇒P ¬∃x∃y(x ≤ 2y ∧ 2y ≤ x ∧ 4 | 2y ∧ ¬(4 | x))

⇐⇒P ¬∃x∃z(x ≤ z ∧ z ≤ x ∧ 4 | z ∧ 2 | z ∧ ¬(4 | x))

⇐⇒P ¬∃x(x ≤ x ∧ 4 | x ∧ 2 | x ∧ ¬(4 | x))

⇐⇒P ¬
3∨

i=1

∃x(4 | x ∧ 2 | x ∧ 4 | x + i)

⇐⇒P ¬
3∨

i=1

3∨
j=0

(4 | j ∧ 2 | j ∧ 4 | j + i)

⇐⇒P ¬⊥
⇐⇒P >
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Homework 13.2. [Quantifier Elimination for Th(Z, 0, S, P,=, <)] (+++)
Give a quantifier-elimination procedure for Th(Z, 0, S, P,=, <) where S is the successor and
P the predecessor operation on integers, i.e. S(n) = n + 1 and P (n) = n − 1. Do not use
Presburger arithmetic; give a direct algorithm.

Solution:
At any point, we normalise any term t such that it might contain S or P but not both:

1. If t = Sk(Pm(u)), replace t by Pm−k(u) if k ≤ m and Sk−m(u) otherwise.

2. Case t = P k(Sm(u)): analogous.

Moreover, we apply the following transformations:

1. Replace ¬(t < u) by t = u ∨ u < t.

2. Replace t = u by t < S(u) ∧ u < S(t).

3. Replace t 6= u by t < u ∨ u < t.

We can then assume that we have some F = ∃x(A1 ∧ . . .∧An) where x occurs in all Ai and
each Ai is of the form

fk(x) < gm(t) or fk(t) < gm(x)

where t is 0 or a variable and f, g ∈ {S, P}. First consider the case t = x:

1. Replace Sk(x) < Sm(x) by > if k < m and ⊥ otherwise.

2. Replace P k(x) < Pm(x) by > if k > m and ⊥ otherwise.

3. Replace P k(x) < Sm(x) by >.

4. Replace Sk(x) < Pm(x) by ⊥.

Let Fx be the conjunction of all these atoms. We then bring all remaining Ai into canonical
form for x:

1. Replace Sk(x) < gm(t) by x < P k(gm(t))

2. Replace P k(x) < gm(t) by x < Sk(gm(t))

3. Replace fk(t) < Sm(x) by Pm(fk(t)) < x

4. Replace fk(t) < Pm(x) by Sm(fk(t)) < x

Let U be the set of these atoms. We then replace F by

Fx ∧
∧

(l<x)∈U

∧
(x<u)∈U

S(l) < u.

It is always easy to be logical.
It is almost impossible to be logical to the bitter end.

— Albert Camus

https://en.wikipedia.org/wiki/Albert_Camus

