First-Order Predicate Logic Basics
Syntax of predicate logic: terms

A variable is a symbol of the form x_i where $i = 1, 2, 3 \ldots$

A function symbol is of the form f_i^k where $i = 1, 2, 3 \ldots$ and $k = 0, 1, 2 \ldots$

A predicate symbol is of the form P_i^k where $i = 1, 2, 3 \ldots$ and $k = 0, 1, 2 \ldots$

We call i the index and k the arity of the symbol.

Terms are inductively defined as follows:

1. Variables are terms.
2. If f is a function symbol of arity k and t_1, \ldots, t_k are terms then $f(t_1, \ldots, t_k)$ is a term.

Function symbols of arity 0 are called constant symbols.
Instead of $f_i^0()$ we write f_i^0.
Syntax of predicate logic: formulas

If P is a predicate symbol of arity k and t_1, \ldots, t_k are terms then $P(t_1, \ldots, t_k)$ is an atomic formula. If $k = 0$ we write P instead of $P()$.

Formulas (of predicate logic) are inductively defined as follows:

- Every atomic formula is a formula.
- If F is a formula, then $\neg F$ is also a formula.
- If F and G are formulas, then $F \land G$, $F \lor G$ and $F \rightarrow G$ are also formulas.
- If x is a variable and F is a formula, then $\forall x \ F$ and $\exists x \ F$ are also formulas.

The symbols \forall and \exists are called the universal and the existential quantifier.
Syntax trees and subformulas

Syntax trees are defined as before, extended with the following trees for $\forall xF$ and $\exists xF$:

```
  ┌───┐       ┌───┐
 ∃x   ┌─┐    ∨x ┌─┐
    │   │    │   │
    F   F    F   F
```

Subformulas again correspond to subtrees.
Structural induction of formulas

Like for propositional logic but

- Different base case: $\mathcal{P}(P(t_1, \ldots, t_k))$
- Two new induction steps:
 - Prove $\mathcal{P}(\forall x \ F)$ under the induction hypothesis $\mathcal{P}(F)$
 - Prove $\mathcal{P}(\exists x \ F)$ under the induction hypothesis $\mathcal{P}(F)$
Naming conventions

\[x, y, z, \ldots \] instead of \[x_1, x_2, x_3, \ldots \]
\[a, b, c, \ldots \] for constant symbols
\[f, g, h, \ldots \] for function symbols of arity \(\geq 0 \)
\[P, Q, R, \ldots \] instead of \[P^k_i \]
Precedence of quantifiers

Quantifiers have the same precedence as \neg

Example
\[\forall x \ P(x) \land Q(x) \] abbreviates \((\forall x \ P(x)) \land Q(x) \)
not
\[\forall x \ (P(x) \land Q(x)) \]

Similarly for \lor etc.

[This convention is not universal]
A variable x occurs in a formula F if it occurs in some atomic subformula of F.

An occurrence of a variable in a formula is either free or bound. An occurrence of x in F is bound if it occurs in some subformula of F of the form $\exists x G$ or $\forall x G$; the smallest such subformula is the scope of the occurrence. Otherwise the occurrence is free.

A formula without any free occurrence of any variable is closed.

Example

$\forall x \ P(x) \rightarrow \exists y \ Q(a, x, y)$
Exercise

<table>
<thead>
<tr>
<th>Formula</th>
<th>Closed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall x \ P(a)$</td>
<td></td>
</tr>
<tr>
<td>$\forall x \exists y \ (Q(x, y) \lor R(x, y))$</td>
<td>Y</td>
</tr>
<tr>
<td>$\forall x \ Q(x, x) \rightarrow \exists x \ Q(x, y)$</td>
<td>N</td>
</tr>
<tr>
<td>$\forall x \ P(x) \lor \forall x \ Q(x, x)$</td>
<td>Y</td>
</tr>
<tr>
<td>$\forall x \ (P(y) \land \forall y \ P(x))$</td>
<td>N</td>
</tr>
<tr>
<td>$P(x) \rightarrow \exists x \ Q(x, f(x))$</td>
<td>N</td>
</tr>
</tbody>
</table>

Formula?

<table>
<thead>
<tr>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\exists x \ P(f(x))$</td>
</tr>
<tr>
<td>$\exists f \ P(f(x))$</td>
</tr>
</tbody>
</table>
Semantics of predicate logic: structures

A structure is a pair $\mathcal{A} = (\mathcal{U}_\mathcal{A}, I_\mathcal{A})$
where $\mathcal{U}_\mathcal{A}$ is an arbitrary, nonempty set called the universe of \mathcal{A},
and the interpretation $I_\mathcal{A}$ is a partial function that maps

- variables to elements of the universe $\mathcal{U}_\mathcal{A}$,
- function symbols of arity k to functions of type $\mathcal{U}_{\mathcal{A}}^k \rightarrow \mathcal{U}_{\mathcal{A}}$,
- predicate symbols of arity k to functions of type $\mathcal{U}_{\mathcal{A}}^k \rightarrow \{0, 1\}$
 (predicates) [or equivalently to subsets of $\mathcal{U}_{\mathcal{A}}^k$ (relations)]

$I_\mathcal{A}$ maps syntax (variables, functions and predicate symbols)
to their meaning (elements, functions and predicates)

The special case of arity 0 can be written more simply:
- constant symbols are mapped to elements of $\mathcal{U}_\mathcal{A}$,
- predicate symbols of arity 0 are mapped to $\{0, 1\}$.
Abbreviations:

\(x^A \) abbreviates \(l_A(x) \)
\(f^A \) abbreviates \(l_A(f) \)
\(P^A \) abbreviates \(l_A(P) \)

Example

\(U_A = \mathbb{N} \)
\(l_A(P) = P^A = \{(m, n) \mid m, n \in \mathbb{N} \text{ and } m < n\} \)
\(l_A(Q) = Q^A = \{m \mid m \in \mathbb{N} \text{ and } m \text{ is prime}\} \)
\(l_A(f) \) is the successor function: \(f^A(n) = n + 1 \)
\(l_A(g) \) is the addition function: \(g^A(m, n) = m + n \)
\(l_A(a) = a^A = 2 \)
\(l_A(z) = z^A = 3 \)

Intuition: is \(\forall x \ P(x, f(x)) \land Q(g(a, z)) \) true in this structure?
Evaluation of a term in a structure

Definition
Let t be a term and let $\mathcal{A} = (U_\mathcal{A}, I_\mathcal{A})$ be a structure. \mathcal{A} is suitable for t if $I_\mathcal{A}$ is defined for all variables and function symbols occurring in t.

The value of a term t in a suitable structure \mathcal{A}, denoted by $\mathcal{A}(t)$, is defined recursively:

\[
\begin{align*}
\mathcal{A}(x) &= x^\mathcal{A} \\
\mathcal{A}(c) &= c^\mathcal{A} \\
\mathcal{A}(f(t_1, \ldots, t_k)) &= f^\mathcal{A}(\mathcal{A}(t_1), \ldots, \mathcal{A}(t_k))
\end{align*}
\]

Example
$\mathcal{A}(f(g(a, z))) =$
Definition
Let F be a formula and let $\mathcal{A} = (U_\mathcal{A}, I_\mathcal{A})$ be a structure. \mathcal{A} is suitable for F if $I_\mathcal{A}$ is defined for all predicate and function symbols occurring in F and for all variables occurring free in F.
Evaluation of a formula in a structure

Let \mathcal{A} be suitable for F. The (truth) value of F in \mathcal{A}, denoted by $\mathcal{A}(F)$, is defined recursively:

$$
\mathcal{A}(\neg F), \mathcal{A}(F \land G), \mathcal{A}(F \lor G), \mathcal{A}(F \rightarrow G)
$$

as for propositional logic

$$
\mathcal{A}(P(t_1, \ldots, t_k)) = \begin{cases}
1 & \text{if } (\mathcal{A}(t_1), \ldots, \mathcal{A}(t_k)) \in P^\mathcal{A} \\
0 & \text{otherwise}
\end{cases}
$$

$$
\mathcal{A}(\forall x \ F) = \begin{cases}
1 & \text{if for every } d \in U_{\mathcal{A}}, \ (\mathcal{A}[d/x])(F) = 1 \\
0 & \text{otherwise}
\end{cases}
$$

$$
\mathcal{A}(\exists x \ F) = \begin{cases}
1 & \text{if for some } d \in U_{\mathcal{A}}, \ (\mathcal{A}[d/x])(F) = 1 \\
0 & \text{otherwise}
\end{cases}
$$

$\mathcal{A}[d/x]$ coincides with \mathcal{A} everywhere except that $x^{\mathcal{A}[d/x]} = d$.

Example
\[A(\forall x \ P(x, f(x)) \land Q(g(a, z))) = \]
During the evaluation of a formulas in a structure, the structure stays unchanged except for the interpretation of the variables.

If the formula is closed, the initial interpretation of the variables is irrelevant.
Lemma
Let A and A' be two structures that coincide on all free variables, on all function symbols and all predicate symbols that occur in F. Then $A(F) = A'(F)$.

Proof.
Exercise.
Relation to propositional logic

- Every propositional formula can be seen as a formula of predicate logic where the atom A_i is replaced by the atom P^0_i.
- Conversely, every formula of predicate logic that does not contain quantifiers and variables can be seen as a formula of propositional logic by replacing atomic formulas by propositional atoms.

Example

$F = (Q(a) \lor \neg P(f(b), b) \land P(b, f(b)))$

can be viewed as the propositional formula $F' = (A_1 \lor \neg A_2 \land A_3)$.

Exercise

F is satisfiable/valid iff F' is satisfiable/valid
Predicate logic with equality

Predicate logic
+ distinguished predicate symbol “=” of arity 2

Semantics: A structure \mathcal{A} of predicate logic with equality always maps the predicate symbol $=$ to the identity relation:

$$\mathcal{A}(=) = \{(d, d) \mid d \in U_\mathcal{A}\}$$
Model, validity, satisfiability

Like in propositional logic

Definition

We write $\mathcal{A} \models F$ to denote that the structure \mathcal{A} is suitable for the formula F and that $\mathcal{A}(F) = 1$.

Then we say that F is true in \mathcal{A} or that \mathcal{A} is a model of F.

If every structure suitable for F is a model of F, then we write $\models F$ and say that F is valid.

If F has at least one model then we say that F is satisfiable.
Exercise

V: valid S: satisfiable, but not valid U: unsatisfiable

<table>
<thead>
<tr>
<th>Formula</th>
<th>V</th>
<th>S</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>∀x P(a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∃x (¬P(x) ∨ P(a))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(a) → ∃x P(x)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(x) → ∃x P(x)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∀x P(x) → ∃x P(x)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∀x P(x) ∧ ¬∀y P(y)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Consequence and equivalence
Like in propositional logic

Definition
A formula G is a consequence of a set of formulas M if every structure that is a model of all $F \in M$ and suitable for G is also a model of G. Then we write $M \models G$.

Two formulas F and G are (semantically) equivalent if every structure \mathcal{A} suitable for both F and G satisfies $\mathcal{A}(F) = \mathcal{A}(G)$. Then we write $F \equiv G$.
Exercise

1. $\forall x P(x) \lor \forall x Q(x, x)$
2. $\forall x (P(x) \lor Q(x, x))$
3. $\forall x (\forall z P(z) \lor \forall y Q(x, y))$

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Exercise

1. $\exists y \forall x \ P(x, y)$
2. $\forall x \exists y \ P(x, y)$

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\models 2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>\models 1</td>
<td></td>
</tr>
</tbody>
</table>
Exercise

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall x \forall y \ F \equiv \forall y \forall x \ F$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\forall x \exists y \ F \equiv \exists x \forall y \ F$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\exists x \exists y \ F \equiv \exists y \exists x \ F$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\forall x \ F \lor \forall x \ G \equiv \forall x \ (F \lor G)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\forall x \ F \land \forall x \ G \equiv \forall x \ (F \land G)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\exists x \ F \lor \exists x \ G \equiv \exists x \ (F \lor G)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\exists x \ F \land \exists x \ G \equiv \exists x \ (F \land G)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Equivalences

Theorem

1. \(\neg \forall x F \equiv \exists x \neg F \)
 \(\neg \exists x F \equiv \forall x \neg F \)

2. If \(x \) does not occur free in \(G \) then:
 \((\forall x F \land G) \equiv \forall x (F \land G) \)
 \((\forall x F \lor G) \equiv \forall x (F \lor G) \)
 \((\exists x F \land G) \equiv \exists x (F \land G) \)
 \((\exists x F \lor G) \equiv \exists x (F \lor G) \)

3. \((\forall x F \land \forall x G) \equiv \forall x(F \land G) \)
 \((\exists x F \lor \exists x G) \equiv \exists x(F \lor G) \)

4. \(\forall x \forall y F \equiv \forall y \forall x F \)
 \(\exists x \exists y F \equiv \exists y \exists x F \)
Replacement theorem

Just like for propositional logic it can be proved:

Theorem

Let $F \equiv G$. Let H be a formula with an occurrence of F as a subformula. Then $H \equiv H'$, where H' is the result of replacing an arbitrary occurrence of F in H by G.