First-order Predicate Logic

Theories
Definitions

Definition
A signature \(\Sigma \) is a set of predicate and function symbols.
A \(\Sigma \)-formula is a formula that contains only predicate and function symbols from \(\Sigma \).
A \(\Sigma \)-structure is a structure that interprets all predicate and function symbols from \(\Sigma \).

Definition
A sentence is a closed formula.
In the sequel, \(S \) is a set of sentences.
Theories

Definition
A theory is a set of sentences S such that S is closed under consequence: If $S \models F$ and F is closed, then $F \in S$.

Let \mathcal{A} be a Σ-structure:
$Th(\mathcal{A})$ is the set of all sentences true in \mathcal{A}:
$Th(\mathcal{A}) = \{F \mid F$ Σ-sentence and $\mathcal{A} \models F\}$

Lemma
Let \mathcal{A} be a Σ-structure and F a Σ-sentence.
Then $\mathcal{A} \models F$ iff $Th(\mathcal{A}) \models F$.

Corollary
$Th(\mathcal{A})$ is a theory.
Lemma

Let \mathcal{A} be a Σ-structure and F a Σ-sentence.

Then $\mathcal{A} \models F$ iff $Th(\mathcal{A}) \models F$.

Proof

“\Rightarrow”

Assume $\mathcal{A} \models F$

To show $Th(\mathcal{A}) \models F$, assume $\mathcal{B} \models Th(\mathcal{A})$ and show $\mathcal{B} \models F$

\Rightarrow for all $G \in Th(\mathcal{A})$, $\mathcal{B} \models G$

$\Rightarrow \mathcal{B} \models F$ because $F \in Th(\mathcal{A})$

“\Leftarrow”:

Assume $Th(\mathcal{A}) \models F$

\Rightarrow for all \mathcal{B}, if $\mathcal{B} \models Th(\mathcal{A})$ then $\mathcal{B} \models F$

$\Rightarrow \mathcal{A} \models F$ because $\mathcal{A} \models Th(\mathcal{A})$
Example

Notation: \((\mathbb{Z}, +, \leq)\) denotes the structure with universe \(\mathbb{Z}\) and the standard interpretations for the symbols + and \(\leq\). The same notation is used for other standard structures where the interpretation of a symbol is clear from the symbol.

Example (Linear integer arithmetic)

\(Th(\mathbb{Z}, +, \leq)\) is the set of all sentences over the signature \(+, \leq\) that are true in the structure \((\mathbb{Z}, +, \leq)\).
Famous numerical theories

\[Th(\mathbb{R}, +, \leq) \] is called linear real arithmetic.
It is decidable.

\[Th(\mathbb{R}, +, \ast, \leq) \] is called real arithmetic.
It is decidable.

\[Th(\mathbb{Z}, +, \leq) \] is called linear integer arithmetic or Presburger arithmetic.
It is decidable.

\[Th(\mathbb{Z}, +, \ast, \leq) \] is called integer arithmetic.
It is not even semidecidable (= r.e.).

Decidability via special algorithms.
Consequences

Definition
Let S be a set of Σ-sentences.

$Cn(S)$ is the set of consequences of S:
$Cn(S) = \{ F \mid F \text{ Σ-sentence and } S \models F \}$

Examples

$Cn(\emptyset)$ is the set of valid sentences.

$Cn(\{\forall x \forall y \forall z \ (x \ast y) \ast z = x \ast (y \ast z)\})$ is the set of sentences that are true in all semigroups.

Lemma

If S is a set of Σ-sentences, $Cn(S)$ is a theory.

Proof
Assume F is closed and $Cn(S) \models F$. Show $F \in Cn(S)$, i.e. $S \models F$. Assume $\mathcal{A} \models S$. Thus $\mathcal{A} \models Cn(S)$ (*) and hence $\mathcal{A} \models F$, i.e. $S \models F$. (*) Assume $G \in Cn(S)$, i.e. $S \models G$. With $\mathcal{A} \models S$ the desired $\mathcal{A} \models G$ follows.
Axioms

Definition
Let S be a set of Σ-sentences.

A theory T is **axiomatized** by S if $T = \text{Cn}(S)$

A theory T is **axiomatizable** if there is some decidable or recursively enumerable S that axiomatizes T.

A theory T is **finitely axiomatizable** if there is some finite S that axiomatizes T.
Completeness and elementary equivalence

Definition
A theory T is **complete** if for every sentence F, $T \models F$ or $T \models \neg F$.

Fact
Th(A) is complete.

Example
$Cn(\{\forall x \forall y \forall z (x \ast y) \ast z = x \ast (y \ast z)\})$ is incomplete:
neither $\forall x \forall y x \ast y = y \ast x$ nor its negation are present.

Definition
Two structures A and B are **elementarily equivalent** if $Th(A) = Th(B)$.

Theorem
A theory T is complete iff all its models are elementarily equivalent.
Theorem

A theory T is complete iff all its models are elementarily equivalent.

Proof If T is unsatisfiable, then T is complete (because $T \models F$ for all F) and all models are elementarily equivalent.

Now assume T has a model \mathcal{M}.

\rightarrow

Assume T is complete. Let $F \in Th(\mathcal{M})$.

We cannot have $T \models \neg F$ because $\mathcal{M} \models T$ would imply $\mathcal{M} \models \neg F$

but $\mathcal{M} \models F$ because $F \in Th(\mathcal{M})$. Thus $T \models F$ by completeness.

Therefore every formula that is true in some model of T is true in all models of T.

\leftarrow

Assume all models of T are elem.eq. Let F be closed.

Either $\mathcal{M} \models F$ or $\mathcal{M} \models \neg F$. By elem.eq. $T \models F$ or $T \models \neg F$.

Why? Assume $\mathcal{M} \models F$ (similar for $\mathcal{M} \models \neg F$).

To show $T \models F$, assume $A \models T$ and show $A \models F$.

$\Rightarrow Th(A) = Th(\mathcal{M})$ by elem.eq.

\Rightarrow for all closed F, $A \models F$ iff $\mathcal{M} \models F$

$\Rightarrow A \models F$ because $\mathcal{M} \models F$