First-Order Logic
Undecidability

[Cutland, *Computability*, Section 6.5.]
Aim:
Show that validity of first-order formulas is undecidable

Method:
Reduce the halting problem to validity of formulas by expressing program behaviour as formulas

Logical formulas can talk about computations!
Register machine programs (RMPs)

A register machine program is a sequence of instructions I_1, \ldots, I_t. The instructions manipulate registers R_i ($i = 1, 2, \ldots$) that contain (unbounded!) natural numbers. There are 4 instructions:

\begin{align*}
R_n &:= 0 \\
R_n &:= R_n + 1 \\
R_n &:= R_m \\
\text{IF } R_m &= R_n \text{ GOTO } p
\end{align*}

Assumption: all jumps in a program go to $1, \ldots, t + 1$; execution terminates when the PC is $t + 1$.

Let r be the maximal index of any register used in a program P. Then the state of P during execution can be described by a tuple of natural numbers

$$(n_1, \ldots, n_r, k)$$

where n_i is the contents of R_i and k is the PC (the number of the next instruction to be executed).
Undecidability

Theorem (Undecidability of the halting problem for RMPs)

It is undecidable if a given register machine program terminates when started in state \((0, \ldots, 0, 1)\).

We reduce the halting problem for RMPs to the validity problem for first-order formulas.

Notation:

\[P(0) \downarrow = \text{“RMP } P \text{ started in state } (0, \ldots, 0, 1) \text{ terminates”} \]

Theorem

Given an RMP \(P \) we can effectively construct a closed formula \(\varphi_P \) such that \(P(0) \downarrow \text{ iff } \models \varphi_P \).
Proof by construction of \(\varphi_P \) from \(P = l_1, \ldots, l_t \).

Funct. symb.: \(z, s \). Abbr.: \(\overline{0} = z, \overline{1} = s(z), \overline{2} = s(s(z)), \ldots \)

Pred. symb.: \(R \) (arity: \(r + 1 \)) “reachable”

Aim: if \(R(\overline{n_1}, \ldots, \overline{n_r}, \overline{k}) \) then \((0, \ldots, 0, 1) \xymap{P} (n_1, \ldots, n_r, k) \)

For every \(l_i \) construct closed formula \(\Psi_i \):

\[
\begin{align*}
I_i = (R_n := 0): & \quad \Psi_i := \forall x_1 \ldots x_r \left(R(x_1, \ldots, x_n, \ldots, x_r, \overline{i}) \rightarrow R(x_1, \ldots, z, \ldots, x_r, s(\overline{i})) \right) \\
I_i = (R_n := r_n + 1): & \quad \text{the same except } s(x_n) \text{ instead of } z \\
I_i = (R_n := 0): & \quad \text{the same except } x_m \text{ instead of } z \\
I_i = (IF \ R_m = R_n \ GOTO \ p): & \quad \Psi_i := \forall x_1 \ldots x_r \left(R(x_1, \ldots, x_n, \ldots, x_r, \overline{i}) \rightarrow (x_m = x_n \rightarrow R(x_1, \ldots, x_r, \overline{p})) \right) \land \left(x_m \neq x_n \rightarrow R(x_1, \ldots, x_r, s(\overline{i})) \right)
\end{align*}
\]

\[
\begin{align*}
\Psi_P := & \quad \Psi \land R(z, \ldots, z, s(z)) \land \Psi_1 \land \cdots \land \Psi_t \\
\Psi \text{ enforces that every model is similar to } & \Bbb{N}: \\
\Psi := & \quad \forall x \forall y (s(x) = s(y) \rightarrow x = y) \land \forall x (z \neq s(x)) \\
(\text{How can models of } \Psi \text{ differ from } & \Bbb{N}?)
\end{align*}
\]
\(\varphi_P := \Psi_P \to \tau \) where \(\tau := \exists x_1 \ldots x_r R(x_1, \ldots, x_n, s(t)) \)

Claim: \(P(0) \downarrow \) iff \(\models \varphi_P \)

“\(\Rightarrow \)” : Assume \(P(0) \downarrow \), show \(\models \varphi_P \). Assume \(\mathcal{A} \models \Psi_P \).

Lemma

If \((0, \ldots, 0, 1) \xrightarrow{P} (n_1, \ldots, n_r, k) \) then \(\mathcal{A} \models R(n_1, \ldots, n_r, k) \)

Proof by induction on the length of the execution using \(\mathcal{A} \models \Psi_P \).

Thus \(\mathcal{A} \models \tau \) because \(P(0) \downarrow \).

“\(\Leftarrow \)” : \(\models \varphi_P \Rightarrow \mathcal{N} \models \varphi_P \Rightarrow (\mathcal{N} \models \Psi_P \Rightarrow \mathcal{N} \models \tau) \Rightarrow P(0) \downarrow \)

where \(U_{\mathcal{N}} := \mathbb{N}, z_\mathcal{N} := 0, s_\mathcal{N}(n) := n + 1, \)

\(R_\mathcal{N} := \{ s \mid (0, \ldots, 0, 1) \xrightarrow{P} s \} \)