# Propositional Logic Definitional CNF 

## Definitional CNF

The definitional CNF of a formula is obtained in 2 steps:

1. Repeatedly replace a subformula $G$ of the form $\neg A^{\prime}, A^{\prime} \wedge B^{\prime}$ or $A^{\prime} \vee B^{\prime}$ by a new atom $A$ and conjoin $A \leftrightarrow G$.
This replacement is not applied to the "definitions" $A \leftrightarrow G$ but only to the (remains of the) original formula.
2. Translate all the subformulas $A \leftrightarrow G$ into CNF.

## Example

$\neg\left(A_{1} \vee A_{2}\right) \wedge A_{3}$
$\neg A_{4} \wedge A_{3} \wedge\left(A_{4} \leftrightarrow\left(A_{1} \vee A_{2}\right)\right)$
$A_{5} \wedge A_{3} \wedge\left(A_{4} \leftrightarrow\left(A_{1} \vee A_{2}\right)\right) \wedge\left(A_{5} \leftrightarrow \neg A_{4}\right)$
$A_{5} \wedge A_{3} \wedge \operatorname{CNF}\left(A_{4} \leftrightarrow\left(A_{1} \vee A_{2}\right)\right) \wedge \operatorname{CNF}\left(A_{5} \leftrightarrow \neg A_{4}\right)$

## Definitional CNF: Complexity

Let the initial formula have size $n$.

1. Each replacement step increases the size of the formula by a constant.
There are at most as many replacement steps as subformulas, linearly many.
2. The conversion of each $A \leftrightarrow G$ into CNF increases the size by a constant.
There are only linearly many such subformulas.
Thus the definitional CNF has size $O(n)$.

## Notation

## Definition

The notation $F[G / A]$ denotes the result of replacing all occurrences of the atom $A$ in $F$ by $G$. We pronounce it as " $F$ with $G$ for $A$ ".

Example
$(A \wedge B)[(A \rightarrow B) / B]=(A \wedge(A \rightarrow B))$
Definition
The notation $\mathcal{A}[v / A]$ denotes a modified version of $\mathcal{A}$ that maps $A$ to $v$ and behaves like $\mathcal{A}$ otherwise:

$$
(\mathcal{A}[v / A])\left(A_{i}\right)= \begin{cases}v & \text { if } A_{i}=A \\ \mathcal{A}\left(A_{i}\right) & \text { otherwise }\end{cases}
$$

## Substitution Lemma

> Lemma
> $\mathcal{A}(F[G / A])=\mathcal{A}^{\prime}(F)$ where $A^{\prime}=A[A(G) / A]$

Example

$$
\mathcal{A}\left(\left(A_{1} \wedge A_{2}\right)\left[G / A_{2}\right]\right)=\mathcal{A}^{\prime}\left(A_{1} \wedge A_{2}\right) \text { where } \mathcal{A}^{\prime}=\mathcal{A}\left[\mathcal{A}(G) / A_{2}\right]
$$

Proof by structural induction on $F$.
Case $F$ is an atom:
If $F=A: \mathcal{A}(F[G / A])=\mathcal{A}(G)=\mathcal{A}^{\prime}(F)$
If $F \neq A: \mathcal{A}(F[G / A])=\mathcal{A}(F)=\mathcal{A}^{\prime}(F)$
Case $F=F_{1} \wedge F_{2}$ :
$\mathcal{A}(F[G / A])=$
$\mathcal{A}\left(F_{1}[G / A] \wedge F_{2}[G / A]\right)=$
$\min \left(\mathcal{A}\left(F_{1}[G / A]\right), \mathcal{A}\left(F_{2}[G / A]\right)\right) \stackrel{\underline{H}}{=}$
$\min \left(\mathcal{A}^{\prime}\left(F_{1}\right), \mathcal{A}^{\prime}\left(F_{2}\right)\right)=\mathcal{A}^{\prime}\left(F_{1} \wedge F_{2}\right)=\mathcal{A}^{\prime}(F)$

## Definitional CNF: Correctness

Each replacement step produces an equisatisfiable formula:

## Lemma

Let $A$ be an atom that does not occur in $G$.
Then $F[G / A]$ is equisatisfiable with $F \wedge(A \leftrightarrow G)$.
Proof If $F[G / A]$ is satisfiable by some assignment $\mathcal{A}$, then by the Substitution Lemma, $\mathcal{A}^{\prime}=\mathcal{A}[\mathcal{A}(G) / A]$ is a model of $F$. Moreover $\mathcal{A}^{\prime} \models(A \leftrightarrow G)$ because $\mathcal{A}^{\prime}(A)=\mathcal{A}(G)$ and $\mathcal{A}(G)=\mathcal{A}^{\prime}(G)$ by the Coincidence Lemma (Exercise 1.2).
Thus $F \wedge(A \leftrightarrow G)$ is satsifiable (by $\mathcal{A}^{\prime}$ ).
Conversely we actually have $F \wedge(A \leftrightarrow G) \models F[G / A]$. Suppose $\mathcal{A} \vDash F \wedge(A \leftrightarrow G)$. This implies $\mathcal{A}(A)=\mathcal{A}(G)$.
Therefore $\mathcal{A}[\mathcal{A}(G) / A]=\mathcal{A}$.
Thus $\mathcal{A}(F[G / A])=(\mathcal{A}[\mathcal{A}(G) / A])(F)=\mathcal{A}(F)=1$ by the Substitution Lemma.

Does $F[G / A] \models F \wedge(A \leftrightarrow G)$ hold?

## Summary

Theorem
For every formula $F$ of size $n$ there is an equisatisfiable CNF formula $G$ of size $O(n)$.

Similarly it can be shown:
Theorem
For every formula $F$ of size $n$ there is an equivalid DNF formula $G$ of size $O(n)$.

## Validity of CNF

Validity of formulas in CNF can be checked in linear time.
A formula in CNF is valid iff all its disjunctions are valid. A disjunction is valid iff it contains both an atomic $A$ and $\neg A$ as literals.

Example
Valid: $\quad(A \vee \neg A \vee B) \wedge(C \vee \neg C)$
Not valid: $\quad(A \vee \neg A) \wedge(\neg A \vee C)$

## Satisfiability of DNF

Satisfiability of formulas in DNF can be checked in linear time.
A formula in DNF is satisfiable iff at least one of its conjunctions is satisfiable. A conjunction is satisfiable iff it does not contain both an atomic $A$ and $\neg A$ as literals.

Example
Satisfiable: $\quad(\neg B \wedge A \wedge B) \vee(\neg A \wedge C)$
Unsatisfiable: $\quad(A \wedge \neg A \wedge B) \vee(C \wedge \neg C)$

## Satisfiability/validity of DNF and CNF

Theorem
Satisfiability of formulas in CNF is NP-complete.

Theorem
Validity of formulas in DNF is co-NP-complete.

The standard decision procedure for vailidity of $F$ :

1. Transform $\neg F$ into an equisat. formula $G$ in def. CNF
2. Apply efficient CNF-based SAT solver to $G$
