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Definitional CNF

The definitional CNF of a formula is obtained in 2 steps:

1. Repeatedly replace a subformula G of the form ¬A′, A′ ∧ B ′

or A′ ∨ B ′ by a new atom A and conjoin A ↔ G .
This replacement is not applied to the “definitions” A ↔ G
but only to the (remains of the) original formula.

2. Translate all the subformulas A ↔ G into CNF.

Example

¬(A1 ∨ A2) ∧ A3

 
¬A4 ∧ A3 ∧ (A4 ↔ (A1 ∨ A2))
 
A5 ∧ A3 ∧ (A4 ↔ (A1 ∨ A2)) ∧ (A5 ↔ ¬A4)
 
A5 ∧ A3 ∧ CNF (A4 ↔ (A1 ∨ A2)) ∧ CNF (A5 ↔ ¬A4)
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Definitional CNF: Complexity

Let the initial formula have size n.

1. Each replacement step increases the size of the formula by a
constant.
There are at most as many replacement steps as subformulas,
linearly many.

2. The conversion of each A ↔ G into CNF increases the size by
a constant.
There are only linearly many such subformulas.

Thus the definitional CNF has size O(n).
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Notation

Definition
The notation F [G/A] denotes the result of replacing all
occurrences of the atom A in F by G .
We pronounce it as “F with G for A”.

Example

(A ∧ B)[(A → B)/B] = (A ∧ (A → B))

Definition
The notation A[v/A] denotes a modified version of A that maps A
to v and behaves like A otherwise:

(A[v/A])(Ai ) =

{
v if Ai = A
A(Ai ) otherwise

4



Substitution Lemma

Lemma
A(F [G/A]) = A′(F ) where A’ = A[A(G)/A]

Example

A((A1 ∧ A2)[G/A2]) = A′(A1 ∧ A2) where A′ = A[A(G )/A2]

Proof by structural induction on F .
Case F is an atom:
If F = A: A(F [G/A]) = A(G ) = A′(F )
If F 6= A: A(F [G/A]) = A(F ) = A′(F )

Case F = F1 ∧ F2:
A(F [G/A]) =
A(F1[G/A] ∧ F2[G/A]) =

min(A(F1[G/A]),A(F2[G/A]))
IH
=

min(A′(F1),A′(F2)) = A′(F1 ∧ F2) = A′(F )
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Definitional CNF: Correctness

Each replacement step produces an equisatisfiable formula:

Lemma
Let A be an atom that does not occur in G .
Then F [G/A] is equisatisfiable with F ∧ (A ↔ G ).

Proof If F [G/A] is satisfiable by some assignment A, then by the
Substitution Lemma, A′ = A[A(G )/A] is a model of F . Moreover
A′ |= (A ↔ G ) because A′(A) = A(G ) and A(G ) = A′(G ) by the
Coincidence Lemma (Exercise 1.2).
Thus F ∧ (A ↔ G ) is satsifiable (by A′).
Conversely we actually have F ∧ (A ↔ G ) |= F [G/A].
Suppose A |= F ∧ (A ↔ G ). This implies A(A) = A(G ).
Therefore A[A(G )/A] = A.
Thus A(F [G/A]) = (A[A(G )/A])(F ) = A(F ) = 1 by the
Substitution Lemma.

Does F [G/A] |= F ∧ (A ↔ G ) hold?
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Summary

Theorem
For every formula F of size n
there is an equisatisfiable CNF formula G of size O(n).

Similarly it can be shown:

Theorem
For every formula F of size n
there is an equivalid DNF formula G of size O(n).
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Validity of CNF

Validity of formulas in CNF can be checked in linear time.
A formula in CNF is valid iff all its disjunctions are valid.
A disjunction is valid iff it contains both an atomic A and
¬A as literals.

Example
Valid: (A ∨ ¬A ∨ B) ∧ (C ∨ ¬C )

Not valid: (A ∨ ¬A) ∧ (¬A ∨ C )
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Satisfiability of DNF

Satisfiability of formulas in DNF can be checked in linear time.
A formula in DNF is satisfiable iff at least one of its con-
junctions is satisfiable. A conjunction is satisfiable iff it
does not contain both an atomic A and ¬A as literals.

Example
Satisfiable: (¬B ∧ A ∧ B) ∨ (¬A ∧ C )

Unsatisfiable: (A ∧ ¬A ∧ B) ∨ (C ∧ ¬C )
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Satisfiability/validity of DNF and CNF

Theorem
Satisfiability of formulas in CNF is NP-complete.

Theorem
Validity of formulas in DNF is co-NP-complete.

The standard decision procedure for vailidity of F :

1. Transform ¬F into an equisat. formula G in def. CNF

2. Apply efficient CNF-based SAT solver to G
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