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Exercise 7.1.  [(In)finite Models]
Consider predicate logic with equality. We use infix notation for equality and abbreviate
—(s =t) by s # t. Moreover, we call a structure finite if its universe is finite.

1. Specify a finite model for the formula Va (¢ # f(x) Az # f(x)).
2. Specify a model for the formula VaVy (¢ # f(z) A (f(z) = f(y) — =z =1)).

3. Show that the second formula has no finite model.

Solution:
1. UA={0,1,2} c N, c* =0, f40)=1,and fAn+1)=2—n
2. UA=Nand c*=0and f4(n)=n+1
3. Assume M is a finite model of the formula. By the second conjunct, f™ is injective
0 [Un] < 1/(Un)]. Further, f(Une) € Ut 50 |f(Un)] = [Una] and hence f(Uni) =
Upn (using our finiteness assumption). Thus there is d € Uy such that f(d) = M,
contradicting the first conjunct.

Exercise 7.2.  [Herbrand Structures]
Consider the formula

F =Vavy(P(f(z),9(y)) A—=P(g(x), f(y)))

1. Specify a Herbrand model for F'.
2. Specify a Herbrand structure suitable for F' that is not a model of F'.

Solution:
We define Uy = T'(F), i.e., the Herbrand universe for /. We invent a constant a € T'(F).
We define f* and ¢g** to be the Herbrand interpretations.

L. PA = {(f(t1>7g(t2>> | t17t2 S T<F)}
2. PA={(g(t1), f(t2)) | t1,t2 € T(F)}.
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Exercise 7.3.  [Ground Resolution]
Use ground (Gilmore) resolution to prove that the following formula is valid:

(VzP(z, f(x))) — 3yP(c,y)

Solution:

First put the formula into Skolem form:

~((VaeP(z, f(x))) — FyP(c,y))

(VxP(z, f(z))) AN —=FyP(c,y)) (push negation)
(VzP(z, f(z))) AYy—P(c,y)) (push negation)
VaVy(P(x, f(z)) A =P(c,y)) (Skolem-Form)

Now enumerate the Herbrand expansion:

CE(F) = {P(c, f(c), ~P(c, f(c)), ...}

With resolution, we immediately get [J from the first two items in the enumeration.
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Exercise 7.4.  [Uncountable “Natural Numbers”|
We consider the following axioms in an attempt to model the natural numbers in first-order
logic with equality:

LBy =Vavy(f(z) = fy) = 2 =y)
2. Fo =Vz(f(x) #0)
3. Fy=Vz(z =0V Iy(z = f(y)))
Give a model with an uncountable universe for:
1. {F1, Fy}
2. {F, F,, F3}

Remember: A set S is uncountable if there is no injection from S to N.

Solution:
L. Us=R{,04=0, and fA(x) =2 +1
f# is clearly injective and there is no x such that f*(x) = 0, because —1 ¢ Uy.
2. We take U4 to be the union of the positive real numbers and the non-positive whole
numbers, i.e., Uy = Ry U Z<y.
Let the symbols be interpreted as follows:

04 =0
{23: ifz>0

A _
Fay=9, 4 ifr<0

(a) fAis defined as two disjoint domains that have disjoint ranges and f is injective
on both domains; hence the entire function is injective.

(b) 01is not in the range of f#: For x > 0, f*(z) > 0 and for z <0, f4(x) < —1.
(¢) To show: = # 0 — Jy(z = f(y)).

If x <0, then 2 < —1, hence v = fA(z +1).

Otherwise, v = f4 (%)



EXERCISE SHEET 7 Locgic PAGE 4

Homework 7.1. [Model Sizes] (+4)

1. Specify a satisfiable formula F' (one with and one without equality) such that for all
models A of F, we have |Uy| > 4.

2. Can you also specify a satisfiable formula F' such that for all models A of F', we have
|U4| < 47 Again, consider both predicate logic with and without equality.

3. Specify a satisfiable formula F’ with equality such that for all finite models A of F', we
have |U,4| € 2Ns,.

Solution:
L 321,290,253, 04. 1 # T2 ATy F T3 ANTL # Ty NTo # T3 N Ty # Ty N T3 7# 24
Without equality, one can use two predicates By and By representing bits and 4 con-

stants ag, a1, as, ag and for each a;, encode 7 in binary using By and By, i.e. =Bj(ag) A
—|Bl(a0) VAN —|Bl(a1) A Bl(al) VAN Bl(ag) A —|Bl(a2) LR
2. VaVy.x =y

Without equality, no limit on the model size can be given: assume there is a finite
model M. Take an arbitrary element e of M. We can add a new element e; that
behaves exactly the same as e to M without changing the set of formula satisfied by
M (proof by structural induction on formulas). We continue this process iteratively
to obtain a model of arbitrary, countable size. Indeed, we could even add an infinite
number of copies of e and obtain models of arbitrary size.

3. Ve = P(z,x) ANVa3yP(x,y) ANVaVyVz(P(z,y) A P(y,z) = (z = 2))
Homework 7.2.  [Herbrand Structures] (+)

Consider the formula
F =Vz(P(f(x)) <> ~P(z))

1. Specify a Herbrand model for F'.

2. Specify a Herbrand structure suitable for F' that is not a model of F'.

Homework 7.3.  [Preconditions Are Here To Stay] (+)
Recall the fundamental theorem from the lecture: “Let F' be a closed formula in Skolem
form. Then F' is satisfiable iff it has a Herbrand model”.

Explain: what goes wrong if the precondition is violated, that is when F' is not closed or not
in Skolem form. Describe both cases.

Solution:

Jz. (P(xz) A—=P(a)); there is no Herbrand model because there is only the constant a and no
functionals but we need at least two elements for the formula to be satisfiable. The same
problems arises for P(x) A =P(a).
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Homework 7.4.  [Ground resolution] (++)
Execute ground resolution to show that the following formula is unsatisfiable:

Vavy((P(x) A =Q(y,y)) = Q,y)) A =Fz(P(x) A 3y(Q(y, y) A Q(x,y))) A Fy(P(y))

Solution:

Algorithmic.

Homework 7.5.  [Proof of the Fundamental Theorem)| (+4+)
Recall the fundamental theorem: Let F' be a closed formula in Skolem form. Then F is
satisfiable iff it has a Herbrand model. Give the omitted proof for the base case (slide 6,

A(G) = T(G)).

Solution:
Let A be an arbitrary model of F.. We define a Herbrand structure 7 as follows (according
to the lecture):

Ur=T(F)  fT(t1,...,tn) = f(t1,. .., ts)

(ti,...,t,) € PTiff (A(ty),..., A(t,)) € PA
Additionally, if F' contains no constant: a* = u for some arbitrary u € Uy4.
We now prove the omitted case for the following stronger proposition: For every closed
formula G in Skolem form such that all function and predicate symbols in G occur in F|,

if A = G then T | G. The proof proceeds by induction on the number n of universal
quantifiers in G.

e Base case: n = 0. G has no quantifiers (because it is in Skolem form).
Claim: A(G) =T (G).
Proof by induction on the structure of G.
— Base case: G = P(ty,..., 1)
We know that A(7(t)) = A(t), because T (t) = t.

T b= P(ty, ... t) iff (T(t1),...,T(tx)) € PT

iff (AT (t)),..., A(T(t)) € PA
iff (A(ty),...,A(ty)) € PA

iff A P(ty,. .. t)

— Induction step: G = Hi A Hs
Induction hypotheses: A(H;) = T (H;) for i € {1,2}

A(Hy N Hy) iff A(Hy) or A(H»)
iff T(Hl) or T(Hg)
iff T(H, A H»)

— Other induction steps are similar.
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Logic takes care of itself; all we have to do is to look and see how it does it.
— Ludwig Wittgenstein




