LOGIC EXERCISES

TECHNICAL UNIVERSITY OF MUNICH CHAIR FOR LOGIC AND VERIFICATION

Prof. Tobias Nipkow Kevin Kappelmann

SS 2022

EXERCISE SHEET 8

17.06.2022

Exercise 8.1. [Simultaneous substitution]

Recall that $[t_1/x_1, \ldots, t_n/x_n]$ is the simultaneous substitution of x_1, \ldots, x_n by t_1, \ldots, t_n .

- 1. Can we always express $[t_1/x_1, \ldots, t_n/x_n]$ as a series of one-variable substitutions?
- 2. Can we always summarise a series of one-variable substitutions to a single simultaneous substitution?

Exercise 8.2. [Most General Unifier]

Consider the unification problem $x \stackrel{?}{=} f(y)$. Without running the unification algorithm, prove that

1. $\sigma_1 = [f(y)/x]$ is a most general unifier.

2. $\sigma_2 = [f(c)/x, c/y]$ is unifier, but not a most general unifier.

Exercise 8.3. [Occurs check]

What happens if one omits the occurs check in the unification algorithm? Find an example where the unification algorithm without occurs check diverges or returns the wrong result.

Exercise 8.4. [Unifiable terms]

Specify the most general unifiers for the following sets of terms, if one exists:

$$L_{1} = \{f(x, y), f(h(a), x)\}$$
$$L_{2} = \{f(x, y), f(h(x), x)\}$$
$$L_{3} = \{f(x, b), f(h(y), z)\}$$
$$L_{4} = \{f(x, x), f(h(y), y)\}$$

Homework 8.1. [Unification]

Use the algorithm presented in the lecture to compute a most general unifier for the following set of formulas: $\{P(g(x), f(a)), P(y, x), P(g(f(z)), f(z))\}$

Homework 8.2. [Untangling simultaneous substitution] (++)

Recall Exercise 8.1. Demonstrate how to "untangle" a simultaneous substitution that has been obtained by consolidating one-variable substitutions back into one-variable substitutions.

Homework 8.3. [Anti-Unification] (+++)

A term t is a generalisation of a list of terms S if for each $s \in S$ there is a substitution σ_s such that $t\sigma_s = s$. A term t is a most specific generalisation (msg) of S if for any generalisation t' of S, there is a substitution $\sigma_{t'}$ such that $t'\sigma_{t'} = t$.

Give a recursive procedure that computes the msg of a finite list S. Apply your algorithm to the list $S \coloneqq [f(g(x), x, d, x), f(x, g(x), d, g(x)), f(h(c), h(c), d, h(c))]$ (where c, d are constants) and prove that the returned msg is indeed an msg of S.

Hint: design an algorithm that operates recursively on the structure of terms.

Optional: Prove that your algorithm always returns the msg.

Homework 8.4. [We're Far From The Shallow Now] (+++) In this exercise, we consider FOL without constants.

A term is called *shallow* if it contains no nested function. For example, x and f(x) are shallow while f(f(x)) is not.

An atom is called *simple* if it only contains shallow terms. For example, R(x) and R(f(x)) are simple while R(f(f(x))) is not.

An atom is *covering* if every functional subterm of it contains all variables of the atom. For example, $R(x_1, x_2)$ and $R(f(x_1, x_2), x_2)$ are covering while $R(f(x_1), x_2)$ is not.

Let $A := R(t_1, \ldots, t_n)$ and $B := R(t'_1, \ldots, t'_n)$ be atoms that are simple and covering, $vars(A) \cap vars(B) = \emptyset$, and assume θ is an mgu of A, B. Show that $C := A\theta = B\theta$ is simple.

Nature will always maintain her rights and prevail in the end over any abstract reasoning whatsoever.

— David Hume

(+)