Logic Exercises

Technical University of Munich CHAIR FOR LOGIC AND VERIFICATION

PROF. TOBIAS NIPKOW Kevin Kappelmann

SS 2022 EXERCISE SHEET 8 17.06.2022

Exercise 8.1. [Simultaneous substitution]

Recall that $[t_1/x_1, \ldots, t_n/x_n]$ is the simultaneous substitution of x_1, \ldots, x_n by t_1, \ldots, t_n .

- 1. Can we always express $[t_1/x_1, \ldots, t_n/x_n]$ as a series of one-variable substitutions?
- 2. Can we always summarise a series of one-variable substitutions to a single simultaneous substitution?

Solution:

- 1. No. Counterexample: $[y/x, x/y]$ (exchanges x and y). *Note:* It is possible for a concrete F though because we could make up fresh variable names, e.g. $F(x, y)[y/x, x/y] = F(x, y)[z/x][x/y][y/z].$
- 2. Yes. We can give a rule to "consolidate" a simultaneous substitution and a one-variable substitution:

$$
[t_1/x_1,\ldots,t_n/x_n][u/y] = \begin{cases} [t_1[u/y]/x_1,\ldots,t_n[u/y]/x_n,u/y], & \text{if } y \notin \{x_1,\ldots,x_n\} \\ [t_1[u/y]/x_1,\ldots,t_n[u/y]/x_n], & \text{otherwise} \end{cases}
$$

Repeatedly apply this rule to obtain a single simultaneous substitution.

Exercise 8.2. [Most General Unifier]

Consider the unification problem $x = f(y)$. Without running the unification algorithm, prove that

- 1. $\sigma_1 = [f(y)/x]$ is a most general unifier.
- 2. $\sigma_2 = [f(c)/x, c/y]$ is unifier, but not a most general unifier.

Solution:

- 1. σ_1 is obvioulsy a unifier. Let σ be a unifier of x and $f(y)$. Then $x\sigma = f(t)$ and $y\sigma = t$ for some term t. Let $y\delta := t$ and $v\delta := v\sigma$ for every variable $v \notin \{x, y\}$. Then $\sigma = \sigma_1\delta$. Hence σ_1 is an mgu. (Note: we could also have chosen $\delta = \sigma$ in this specific case).
- 2. σ_2 is obviously a unifier but it is not a most general one since there is no δ such that $[f(y)/x] = \sigma_1 = \sigma_2 \delta = [f(c)/x, c/y] \delta$ because $c\delta = c \neq y$.

Exercise 8.3. [Occurs check]

What happens if one omits the occurs check in the unification algorithm? Find an example where the unification algorithm without occurs check diverges or returns the wrong result.

Solution:

Consider $x = f(x)$. Without the occurs check, we first produce $\sigma = \{x \mapsto f(x)\}\$. The algorithm keeps going and produces $\sigma' = \{x \mapsto f(f(x))\}$, then $\sigma'' = \{x \mapsto f(f(f(x)))\}$ and so on.

Exercise 8.4. [Unifiable terms]

Specify the most general unifiers for the following sets of terms, if one exists:

$$
L_1 = \{f(x, y), f(h(a), x)\}
$$

\n
$$
L_2 = \{f(x, y), f(h(x), x)\}
$$

\n
$$
L_3 = \{f(x, b), f(h(y), z)\}
$$

\n
$$
L_4 = \{f(x, x), f(h(y), y)\}
$$

Solution:

Homework 8.1. [Unification] $(+)$

Use the algorithm presented in the lecture to compute a most general unifier for the following set of formulas: $\{P(g(x), f(a)), P(y, x), P(g(f(z)), f(z))\}$

Solution:

Algorithmic.

Homework 8.2. [Untangling simultaneous substitution] $(++)$ Recall Exercise 8.1. Demonstrate how to "untangle" a simultaneous substitution that has been obtained by consolidating one-variable substitutions back into one-variable substitutions.

Solution:

Take some substitution $[t_1/x_1, \ldots, t_n/x_n]$. Let t'_i denote the term obtained by replacing all subterms t_n in t_i by x_n . We have $t_i = t'_i[t_n/x_n]$ and thus

 $[t_1/x_1, \ldots, t_n/x_n] = [t'_1/x_1, \ldots, t'_{n-1}/x_{n-1}][t_n/x_n].$

Apply this process repeatedly to obtain the wanted series of one-variable substitutions.

Homework 8.3. [Anti-Unification] (+++)

A term t is a generalisation of a list of terms S if for each $s \in S$ there is a substitution σ_s such that $t\sigma_s = s$. A term t is a most specific generalisation (msg) of S if for any generalisation t' of S, there is a substitution $\sigma_{t'}$ such that $t'\sigma_{t'}=t$.

Give a recursive procedure that computes the msg of a finite list S. Apply your algorithm to the list $S \coloneqq [f(g(x), x, d, x), f(x, g(x), d, g(x)), f(h(c), h(c), d, h(c))]$ (where c, d are constants) and prove that the returned msg is indeed an msg of S.

Hint: design an algorithm that operates recursively on the structure of terms.

Optional: Prove that your algorithm always returns the msg.

Solution:

Call our algorithm $msg(\cdot)$. Input: non-empty list S

- 1. If all terms in S are equal, then return head(S).
- 2. If $S = [f(t_1^1, \ldots, t_n^1), \ldots, f(t_1^k, \ldots, t_n^k)]$ then compute $t_i \coloneqq \mathsf{msg}(S_i)$ with $S_i \coloneqq [t_i^1, \ldots, t_i^k]$ for $1 \leq i \leq n$ and return $f(t_1, \ldots, t_n)$.
- 3. Otherwise return x_S .

As for the example:

- 1. We hit case 2 and must recurse
- 2. $S_1 = [g(x), x, h(c)]$: We hit case 3 and return $x_{[g(x),x,h(c)]}$.
- 3. $S_2 = [x, g(x), h(c)]$: We hit case 3 and return $x_{[x,g(x),h(c)]}$.
- 4. $S_3 = [d, d, d]$: We hit case 1 and return d.
- 5. $S_4 = [x, g(x), h(c)]$: We hit case 3 and return $x_{[x,q(x),h(c)]}$.
- 6. We return $f(x_{[q(x),x,h(c)]}, x_{[x,q(x),h(c)]}, d, x_{[x,q(x),h(c)]})$. The returned term is equivalent to $f(x, y, d, y) \equiv: t$.

It is easy to check that t is a generalisation of S. Let t_i be the i-th term in S. Let t' be another generalisation. Then there are $\sigma_1, \sigma_2, \sigma_3$ such that $t' \sigma_i = t_i$. If t' is a variable, then t is obviously more specific. Hence, t' must be of the form $f(t'_1, \ldots, t'_4)$. Since $t'\sigma_2 =$ $f(x, g(x), d, g(x))$, t'_1 must be a variable x_1 and t'_3 a variable x_3 or the constant d. Since $t'\sigma_1 =$ $f(g(x), x, d, x)$, t'_2 must be a variable x_2 and t'_4 a variable x_4 . So either $t' = f(x_1, x_2, x_3, x_4)$ or $t' = f(x_1, x_2, d, x_4)$. In the former case, t is more specific by already setting x_3 to d and in the latter case t is more specific by already unifying x_2 and x_4 .

Homework 8.4. [We're Far From The Shallow Now]
$$
(+++)
$$
 In this exercise, we consider FOI, with out context.

In this exercise, we consider FOL without constants.

A term is called *shallow* if it contains no nested function. For example, x and $f(x)$ are shallow while $f(f(x))$ is not.

An atom is called *simple* if it only contains shallow terms. For example, $R(x)$ and $R(f(x))$ are simple while $R(f(f(x)))$ is not.

An atom is covering if every functional subterm of it contains all variables of the atom. For example, $R(x_1, x_2)$ and $R(f(x_1, x_2), x_2)$ are covering while $R(f(x_1), x_2)$ is not.

Let $A \coloneqq R(t_1, \ldots, t_n)$ and $B \coloneqq R(t'_1, \ldots, t'_n)$ be atoms that are simple and covering, vars $(A) \cap$ $\mathsf{vars}(B) = \emptyset$, and assume θ is an mgu of A, B. Show that $C \coloneqq A\theta = B\theta$ is simple.

Solution:

In the following, we abbreviate a list of terms t_1, \ldots, t_n by \vec{t} . Let $\vec{x} := \text{vars}(A), \vec{y} := \text{vars}(B)$, and fix a fresh variable $z \notin \vec{x} \cup \vec{y}$. We consider the following cases:

- 1. A and B are function-free.
- 2. A contains a function and B is function-free (or vice versa).
- 3. A and B contain functions.

Case 1: Define a substitution θ' by $v\theta' \coloneqq z$ for any $v \in \vec{x} \cup \vec{y}$. Then $A\theta' = B\theta'$ are functionfree. Since θ is an mgu, there is some δ such that $\theta' = \theta \delta$. Since δ may only introduce functions and not eliminate them, also $A\theta = B\theta$ is function-free and hence simple.

Case 2: WLOG assume A contains a function and B is function-free (the other case is symmetric). We define a substitution θ' by

$$
v\theta' \coloneqq \begin{cases} z, & \text{if } v \in \vec{x} \\ t_i \theta', & \text{if } v = t_i' \in \vec{y} \end{cases}
$$

.

We show that θ' is well-defined; that is, if $y_k = t'_i = t'_j$, then $t_i\theta' = t_j\theta'$. Again, we consider three cases:

- If $t_i, t_j \in \mathcal{X}$, then $t_i \theta' = z = t_j \theta'$.
- Assume $t_i = f_1(\vec{x})$ and $t_j = f_2(\vec{x})$. As θ is a unifier, we have $t_i\theta = t'_i\theta = t'_j\theta = t_j\theta$, and hence $f_1 = f_2$. Consequently, $t_i \theta' = f_1(\vec{z}) = f_2(\vec{z}) = t_j \theta'$.
- Lastly, consider the cases $t_i \in \vec{x}$ and $t_j = f(\vec{x})$, or $t_j \in \vec{x}$ and $t_i = f(\vec{x})$. WLOG, assume the former (the other case is symmetric). Then $t_i\theta = t'_i\theta = t'_j\theta = t_j\theta = f(\vec{x})\theta$. But $t_i \theta \neq f(\vec{x})\theta$ since $t_i \in \vec{x}$ (occurs check), a contradiction. Consequently, the case $t_i \in \vec{x}$ and $t_j = f(\vec{x})$ cannot emerge.

Hence, θ' is well-defined. Moreover, $t'_i \theta' = t_i \theta'$ by definition; that is, $A\theta' = B\theta'$. Moreover, $θ'$ does not introduce functions on \vec{x} and only shallow terms on \vec{y} , and hence $Aθ' = Bθ'$ is simple. Hence, as in Case 1, $A\theta = B\theta$ is simple.

Case 3: Finally assume A and B contain functions. Again define a substitution θ' by $v\theta' \coloneqq z$ for any $v \in \vec{x} \cup \vec{y}$. We show that $A\theta' = B\theta'$; that is, $t_i\theta' = t'_i\theta'$ for $1 \leq i \leq n$.

- If $t_i \in \vec{x}$ and $t'_i \in \vec{y}$, then $t_i \theta' = z = t'_i \theta$.
- If $t_i = f_1(\vec{x})$ and $t'_i = f_2(\vec{y})$, then again $f_1 = f_2$ using that θ is a unifier, and consequently, $t_i \theta' = f_1(\vec{z}) = f_2(\vec{z}) = t'_i \theta'.$
- Lastly, consider the cases $t_i \in \vec{x}$ and $t'_i = f(\vec{y})$, or $t_i = f(\vec{x})$ and $t'_i \in \vec{y}$. WLOG, assume the former. Then $t_i\theta = t'_i\theta = f(\vec{y})\theta$. As A is functional, there is some $j \in \{1, ..., n\}$ with $t_j = f'(\vec{x})$, and thus $f'(\vec{x})\theta = t_j\theta = t'_j\theta$. We have two cases:
	- If $t'_j = f'(\vec{y})$, then $f'(\vec{x})\theta = f'(\vec{y})\theta$. As $t_i \in \vec{x}$, this implies $t_i\theta = y_k\theta$ for some $y_k \in \vec{y}$. Hence, $y_k \theta = t_i \theta = t'_i \theta = f(\vec{y})\theta$, a contradiction (occurs check).
	- If $t'_j = y_k$, then $y_k \theta = f'(\vec{x})\theta$. As $t_i \in \vec{x}$, $t_i \theta$ is a subterm of $y_k \theta$. But we also have $t_i\theta = f(\vec{y})\theta$, a contradiction.

Consequently, the case $t_i \in \vec{x}$ and $t'_i = f(\vec{y})$ cannot emerge.

Hence, θ' unifies A and B. Moreover, θ' does not introduce functions, and hence $A\theta' = B\theta'$ is simple. Thus, $A\theta = B\theta$ is simple.

Nature will always maintain her rights and prevail in the end over any abstract reasoning whatsoever.

— [David Hume](https://en.wikipedia.org/wiki/David_Hume)