
Technical University of Munich
Chair for Logic and Verification

Prof. Tobias Nipkow
Kevin Kappelmann

Logic Exercises

SS 2022 Exercise Sheet 8 17.06.2022

Exercise 8.1. [Simultaneous substitution]
Recall that [t1/x1, . . . , tn/xn] is the simultaneous substitution of x1, . . . , xn by t1, . . . , tn.

1. Can we always express [t1/x1, . . . , tn/xn] as a series of one-variable substitutions?

2. Can we always summarise a series of one-variable substitutions to a single simultaneous
substitution?

Solution:

1. No. Counterexample: [y/x, x/y] (exchanges x and y).

Note: It is possible for a concrete F though because we could make up fresh variable
names, e.g. F (x, y)[y/x, x/y] = F (x, y)[z/x][x/y][y/z].

2. Yes. We can give a rule to “consolidate” a simultaneous substitution and a one-variable
substitution:

[t1/x1, . . . , tn/xn][u/y] =

{[
t1[u/y]/x1, . . . , tn[u/y]/xn, u/y

]
, if y /∈ {x1, . . . , xn}[

t1[u/y]/x1, . . . , tn[u/y]/xn
]
, otherwise

Repeatedly apply this rule to obtain a single simultaneous substitution.

Exercise 8.2. [Most General Unifier]

Consider the unification problem x
?
= f(y). Without running the unification algorithm,

prove that

1. σ1 = [f(y)/x] is a most general unifier.

2. σ2 = [f(c)/x, c/y] is unifier, but not a most general unifier.

Solution:

1. σ1 is obvioulsy a unifier. Let σ be a unifier of x and f(y). Then xσ = f(t) and yσ = t
for some term t. Let yδ := t and vδ := vσ for every variable v /∈ {x, y}. Then σ = σ1δ.
Hence σ1 is an mgu. (Note: we could also have chosen δ = σ in this specific case).

2. σ2 is obviously a unifier but it is not a most general one since there is no δ such that
[f(y)/x] = σ1 = σ2δ = [f(c)/x, c/y]δ because cδ = c 6= y.

Exercise 8.3. [Occurs check]
What happens if one omits the occurs check in the unification algorithm? Find an example
where the unification algorithm without occurs check diverges or returns the wrong result.

Solution:
Consider x

?
= f(x). Without the occurs check, we first produce σ = {x 7→ f(x)}. The

algorithm keeps going and produces σ′ = {x 7→ f(f(x))}, then σ′′ = {x 7→ f(f(f(x)))} and
so on.



Exercise Sheet 8 Logic Page 2

Exercise 8.4. [Unifiable terms]
Specify the most general unifiers for the following sets of terms, if one exists:

L1 = {f(x, y), f(h(a), x)}
L2 = {f(x, y), f(h(x), x)}
L3 = {f(x, b), f(h(y), z)}
L4 = {f(x, x), f(h(y), y)}

Solution:

L1 : [h(a)/x, h(a)/y]

L2 : No unifier, occurs check fails on x ∼ h(x)

L3 : [h(y)/x, b/z]

L4 : No unifier, occurs check fails on h(y) ∼ y



Exercise Sheet 8 Logic Page 3

Homework 8.1. [Unification] (+)
Use the algorithm presented in the lecture to compute a most general unifier for the following
set of formulas: {P (g(x), f(a)), P (y, x), P (g(f(z)), f(z))}

Solution:
Algorithmic.

Homework 8.2. [Untangling simultaneous substitution] (++)
Recall Exercise 8.1. Demonstrate how to “untangle” a simultaneous substitution that has
been obtained by consolidating one-variable substitutions back into one-variable substitu-
tions.

Solution:
Take some substitution [t1/x1, . . . , tn/xn]. Let t′i denote the term obtained by replacing all
subterms tn in ti by xn. We have ti = t′i[tn/xn] and thus

[t1/x1, . . . , tn/xn] = [t′1/x1, . . . , t
′
n−1/xn−1][tn/xn].

Apply this process repeatedly to obtain the wanted series of one-variable substitutions.



Exercise Sheet 8 Logic Page 4

Homework 8.3. [Anti-Unification] (+++)
A term t is a generalisation of a list of terms S if for each s ∈ S there is a substitution σs such
that tσs = s. A term t is a most specific generalisation (msg) of S if for any generalisation
t′ of S, there is a substitution σt′ such that t′σt′ = t.

Give a recursive procedure that computes the msg of a finite list S. Apply your algorithm
to the list S :=

[
f(g(x), x, d, x), f(x, g(x), d, g(x)), f(h(c), h(c), d, h(c))

]
(where c, d are con-

stants) and prove that the returned msg is indeed an msg of S.

Hint: design an algorithm that operates recursively on the structure of terms.

Optional: Prove that your algorithm always returns the msg.

Solution:
Call our algorithm msg(·). Input: non-empty list S

1. If all terms in S are equal, then return head(S).

2. If S =
[
f(t11, . . . , t

1
n), . . . , f(tk1, . . . , t

k
n)
]

then compute ti := msg(Si) with Si := [t1i , . . . , t
k
i ]

for 1 ≤ i ≤ n and return f(t1, . . . , tn).

3. Otherwise return xS.

As for the example:

1. We hit case 2 and must recurse

2. S1 = [g(x), x, h(c)]: We hit case 3 and return x[g(x),x,h(c)].

3. S2 = [x, g(x), h(c)]: We hit case 3 and return x[x,g(x),h(c)].

4. S3 = [d, d, d]: We hit case 1 and return d.

5. S4 = [x, g(x), h(c)]: We hit case 3 and return x[x,g(x),h(c)].

6. We return f(x[g(x),x,h(c)], x[x,g(x),h(c)], d, x[x,g(x),h(c)]). The returned term is equivalent to
f(x, y, d, y) =: t.

It is easy to check that t is a generalisation of S. Let ti be the i-th term in S. Let t′

be another generalisation. Then there are σ1, σ2, σ3 such that t′σi = ti. If t′ is a variable,
then t is obviously more specific. Hence, t′ must be of the form f(t′1, . . . , t

′
4). Since t′σ2 =

f(x, g(x), d, g(x)), t′1 must be a variable x1 and t′3 a variable x3 or the constant d. Since t′σ1 =
f(g(x), x, d, x), t′2 must be a variable x2 and t′4 a variable x4. So either t′ = f(x1, x2, x3, x4)
or t′ = f(x1, x2, d, x4). In the former case, t is more specific by already setting x3 to d and
in the latter case t is more specific by already unifying x2 and x4.



Exercise Sheet 8 Logic Page 5

Homework 8.4. [We’re Far From The Shallow Now] (+++)
In this exercise, we consider FOL without constants.

A term is called shallow if it contains no nested function. For example, x and f(x) are
shallow while f(f(x)) is not.

An atom is called simple if it only contains shallow terms. For example, R(x) and R(f(x))
are simple while R(f(f(x))) is not.

An atom is covering if every functional subterm of it contains all variables of the atom. For
example, R(x1, x2) and R(f(x1, x2), x2) are covering while R(f(x1), x2) is not.

Let A := R(t1, . . . , tn) andB := R(t′1, . . . , t
′
n) be atoms that are simple and covering, vars(A)∩

vars(B) = ∅, and assume θ is an mgu of A,B. Show that C := Aθ = Bθ is simple.

Solution:
In the following, we abbreviate a list of terms t1, . . . , tn by ~t. Let ~x := vars(A), ~y := vars(B),
and fix a fresh variable z /∈ ~x ∪ ~y. We consider the following cases:

1. A and B are function-free.

2. A contains a function and B is function-free (or vice versa).

3. A and B contain functions.

Case 1: Define a substitution θ′ by vθ′ := z for any v ∈ ~x∪ ~y. Then Aθ′ = Bθ′ are function-
free. Since θ is an mgu, there is some δ such that θ′ = θδ. Since δ may only introduce
functions and not eliminate them, also Aθ = Bθ is function-free and hence simple.

Case 2: WLOG assume A contains a function and B is function-free (the other case is
symmetric). We define a substitution θ′ by

vθ′ :=

{
z, if v ∈ ~x
tiθ
′, if v = t′i ∈ ~y

.

We show that θ′ is well-defined; that is, if yk = t′i = t′j, then tiθ
′ = tjθ

′. Again, we consider
three cases:

• If ti, tj ∈ ~x, then tiθ
′ = z = tjθ

′.

• Assume ti = f1(~x) and tj = f2(~x). As θ is a unifier, we have tiθ = t′iθ = t′jθ = tjθ, and
hence f1 = f2. Consequently, tiθ

′ = f1(~z) = f2(~z) = tjθ
′.

• Lastly, consider the cases ti ∈ ~x and tj = f(~x), or tj ∈ ~x and ti = f(~x). WLOG,
assume the former (the other case is symmetric). Then tiθ = t′iθ = t′jθ = tjθ = f(~x)θ.
But tiθ 6= f(~x)θ since ti ∈ ~x (occurs check), a contradiction. Consequently, the case
ti ∈ ~x and tj = f(~x) cannot emerge.

Hence, θ′ is well-defined. Moreover, t′iθ
′ = tiθ

′ by definition; that is, Aθ′ = Bθ′. Moreover,
θ′ does not introduce functions on ~x and only shallow terms on ~y, and hence Aθ′ = Bθ′ is
simple. Hence, as in Case 1, Aθ = Bθ is simple.

Case 3: Finally assume A and B contain functions. Again define a substitution θ′ by vθ′ := z
for any v ∈ ~x ∪ ~y. We show that Aθ′ = Bθ′; that is, tiθ

′ = t′iθ
′ for 1 ≤ i ≤ n.



Exercise Sheet 8 Logic Page 6

• If ti ∈ ~x and t′i ∈ ~y, then tiθ
′ = z = t′iθ.

• If ti = f1(~x) and t′i = f2(~y), then again f1 = f2 using that θ is a unifier, and conse-
quently, tiθ

′ = f1(~z) = f2(~z) = t′iθ
′.

• Lastly, consider the cases ti ∈ ~x and t′i = f(~y), or ti = f(~x) and t′i ∈ ~y. WLOG, assume
the former. Then tiθ = t′iθ = f(~y)θ. As A is functional, there is some j ∈ {1, . . . , n}
with tj = f ′(~x), and thus f ′(~x)θ = tjθ = t′jθ. We have two cases:

– If t′j = f ′(~y), then f ′(~x)θ = f ′(~y)θ. As ti ∈ ~x, this implies tiθ = ykθ for some
yk ∈ ~y. Hence, ykθ = tiθ = t′iθ = f(~y)θ, a contradiction (occurs check).

– If t′j = yk, then ykθ = f ′(~x)θ. As ti ∈ ~x, tiθ is a subterm of ykθ. But we also have
tiθ = f(~y)θ, a contradiction.

Consequently, the case ti ∈ ~x and t′i = f(~y) cannot emerge.

Hence, θ′ unifies A and B. Moreover, θ′ does not introduce functions, and hence Aθ′ = Bθ′

is simple. Thus, Aθ = Bθ is simple.

Nature will always maintain her rights and prevail in the end over any abstract
reasoning whatsoever.

— David Hume

https://en.wikipedia.org/wiki/David_Hume

