LOGIC EXERCISES

TECHNICAL UNIVERSITY OF MUNICH CHAIR FOR LOGIC AND VERIFICATION

Prof. Tobias Nipkow Kevin Kappelmann

SS 2022

EXERCISE SHEET 11

08.07.2022

Exercise 11.1. [This Is Unnatural]

Let \mathcal{N} be the standard model of the natural numbers. In tutorial exercise 10.4, we proved that any countable axiomatisation T of \mathcal{N} (i.e. $Cn(T) = Th(\mathcal{N})$) over some signature Σ admits another, non-isomorphic model \mathcal{N}' (in particular, $Cn(T) = Th(\mathcal{N}')$).

Prove that \mathcal{N}' contains not only one, but infinitely many non-standard natural numbers $d_n \in U^{\mathcal{N}'}$, i.e. $\mathcal{N}'[d_n/x] \models x \neq m$ for all $n, m \in \mathbb{N}$ and $\mathcal{N}'[d_n/x, d_m/y] \models x \neq y$ for all $n, m \in \mathbb{N}$ with $n \neq m$.

Exercise 11.2. [Decidability of Complete Theories]

Assume S is finitely axiomatizable and complete, i.e. $F \in S$ or $\neg F \in S$ for any sentence F.

- 1. Given only the axiomatization of S, give a procedure deciding whether $S \models F$ for any sentence F.
- 2. Can you obtain a similar result when the assumption is that the axiom system is only *recursively enumerable*?

Exercise 11.3. [One Finite, All Finite]

Show that if a theory is finitely axiomatizable, any countable axiomatization of it has a finite subset that axiomatizes the same theory. In other words, if $Cn(\Gamma) = Cn(\Delta)$ with Γ countable and Δ finite, then there is a finite $\Gamma' \subseteq \Gamma$ with $Cn(\Gamma') = Cn(\Gamma)$. Can you also obtain Γ' effectively?

Exercise 11.4. [Natural Deduction]

Prove the following formula using natural deduction.

$$\neg(\forall x(\exists y(\neg P(x) \land P(y))))$$

(++)

(+)

(++)

Homework 11.1. [Counterexamples from Sequent Calculus] (++)Consider the statement $\forall x(P(x) \rightarrow \neg P(f(x)))$.

- 1. What happens when trying to prove the validity of this formula in sequent calculus?
- 2. How can we derive a countermodel from the proof tree?
- 3. Is there a smaller countermodel?

Homework 11.2. [Natural Deduction]

Prove the following statements using natural deduction.

1.
$$\neg \forall x \exists y \forall z (\neg P(x, z) \land P(z, y))$$

2.
$$\exists x(P(x) \to \forall xP(x))$$

Homework 11.3. [Closure Operator]

Show that Cn is a closure operator, i.e. Cn fulfills the following properties:

- $S \subseteq Cn(S)$
- if $S \subseteq S'$ then $Cn(S) \subseteq Cn(S')$
- Cn(Cn(S)) = Cn(S)

Homework 11.4. [Elementary Classes]

In this exercise, we assume that all structures and formulas share the same signature Σ .

We define the operator Mod(S) that returns the class of all structures that model a set of formulas S. In other words, Mod(S) contains all \mathcal{A} such that $\mathcal{A} \models S$.

A class of models M is said to be *elementary* if there is a set of formulas S such that M = Mod(S). If S is just a singleton set, i.e. there is a formula F such that $S = \{F\}$, then M is *basic elementary*.

Prove:

- 1. A class of models M is basic elementary if and only if there is a *finite* set of formulas S such that M = Mod(S).
- 2. If M is basic elementary and M = Mod(S) for countable S, then there is a finite subset $S' \subseteq S$ such that M = Mod(S').

The logic of the world is prior to all truth and falsehood.

— Ludwig Wittgenstein¹

 $^1\mathrm{Yes},$ Ludwig strikes again – he just dropped too many great quotes.